The lens space realization problem
Annals of mathematics, Tome 177 (2013) no. 2, pp. 449-511.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We determine the lens spaces that arise by integer Dehn surgery along a knot in the three-sphere. Specifically, if surgery along a knot produces a lens space, then there exists an equivalent surgery along a Berge knot with the same knot Floer homology groups. This leads to sharp information about the genus of such a knot. The arguments rely on tools from Floer homology and lattice theory. They are primarily combinatorial in nature.
DOI : 10.4007/annals.2013.177.2.3

Joshua Evan Greene 1

1 Boston College, Chestnut Hill, MA
@article{10_4007_annals_2013_177_2_3,
     author = {Joshua Evan Greene},
     title = {The lens space realization problem},
     journal = {Annals of mathematics},
     pages = {449--511},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2013},
     doi = {10.4007/annals.2013.177.2.3},
     mrnumber = {3010805},
     zbl = {06156614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.3/}
}
TY  - JOUR
AU  - Joshua Evan Greene
TI  - The lens space realization problem
JO  - Annals of mathematics
PY  - 2013
SP  - 449
EP  - 511
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.3/
DO  - 10.4007/annals.2013.177.2.3
LA  - en
ID  - 10_4007_annals_2013_177_2_3
ER  - 
%0 Journal Article
%A Joshua Evan Greene
%T The lens space realization problem
%J Annals of mathematics
%D 2013
%P 449-511
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.3/
%R 10.4007/annals.2013.177.2.3
%G en
%F 10_4007_annals_2013_177_2_3
Joshua Evan Greene. The lens space realization problem. Annals of mathematics, Tome 177 (2013) no. 2, pp. 449-511. doi : 10.4007/annals.2013.177.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.3/

Cité par Sources :