The Parisi ultrametricity conjecture
Annals of mathematics, Tome 177 (2013) no. 1, pp. 383-393.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we prove that the support of a random measure on the unit ball of a separable Hilbert space that satisfies the Ghirlanda-Guerra identities must be ultrametric with probability one. This implies the Parisi ultrametricity conjecture in mean-field spin glass models, such as the Sherrington-Kirkpatrick and mixed $p$-spin models, for which Gibbs measures are known to satisfy the Ghirlanda-Guerra identities in the thermodynamic limit.
DOI : 10.4007/annals.2013.177.1.8

Dmitry Panchenko 1

1 Department of Mathematics, Texas A&M University, College Station, TX 77843
@article{10_4007_annals_2013_177_1_8,
     author = {Dmitry Panchenko},
     title = {The {Parisi} ultrametricity conjecture},
     journal = {Annals of mathematics},
     pages = {383--393},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2013},
     doi = {10.4007/annals.2013.177.1.8},
     mrnumber = {2999044},
     zbl = {06146423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.8/}
}
TY  - JOUR
AU  - Dmitry Panchenko
TI  - The Parisi ultrametricity conjecture
JO  - Annals of mathematics
PY  - 2013
SP  - 383
EP  - 393
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.8/
DO  - 10.4007/annals.2013.177.1.8
LA  - en
ID  - 10_4007_annals_2013_177_1_8
ER  - 
%0 Journal Article
%A Dmitry Panchenko
%T The Parisi ultrametricity conjecture
%J Annals of mathematics
%D 2013
%P 383-393
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.8/
%R 10.4007/annals.2013.177.1.8
%G en
%F 10_4007_annals_2013_177_1_8
Dmitry Panchenko. The Parisi ultrametricity conjecture. Annals of mathematics, Tome 177 (2013) no. 1, pp. 383-393. doi : 10.4007/annals.2013.177.1.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.8/

Cité par Sources :