Kloosterman sheaves for reductive groups
Annals of mathematics, Tome 177 (2013) no. 1, pp. 241-310.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Deligne constructed a remarkable local system on $\mathbb{P}^1-\{0,\infty\}$ attached to a family of Kloosterman sums. Katz calculated its monodromy and asked whether there are Kloosterman sheaves for general reductive groups and which automorphic forms should be attached to these local systems under the Langlands correspondence.
Motivated by work of Gross and Frenkel-Gross we find an explicit family of such automorphic forms and even a simple family of automorphic sheaves in the framework of the geometric Langlands program. We use these automorphic sheaves to construct $\ell$-adic Kloosterman sheaves for any reductive group in a uniform way, and describe the local and global monodromy of these Kloosterman sheaves. In particular, they give motivic Galois representations with exceptional monodromy groups $G_2,F_4,E_7$ and $E_8$. This also gives an example of the geometric Langlands correspondence with wild ramification for any reductive group.
DOI : 10.4007/annals.2013.177.1.5

Jochen Heinloth 1 ; Bao-Chaû Ngô 2 ; Zhiwei Yun 3

1 University of Amsterdam, Korteweg-de Vries Institute of Mathematics, 1098 XH Amsterdam, The Netherlands
2 Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637
3 Department of Mathematics, Stanford University, Stanford, CA 94305
@article{10_4007_annals_2013_177_1_5,
     author = {Jochen Heinloth and Bao-Cha\^u Ng\^o and Zhiwei Yun},
     title = {Kloosterman sheaves for reductive groups},
     journal = {Annals of mathematics},
     pages = {241--310},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2013},
     doi = {10.4007/annals.2013.177.1.5},
     mrnumber = {2999041},
     zbl = {06146420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.5/}
}
TY  - JOUR
AU  - Jochen Heinloth
AU  - Bao-Chaû Ngô
AU  - Zhiwei Yun
TI  - Kloosterman sheaves for reductive groups
JO  - Annals of mathematics
PY  - 2013
SP  - 241
EP  - 310
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.5/
DO  - 10.4007/annals.2013.177.1.5
LA  - en
ID  - 10_4007_annals_2013_177_1_5
ER  - 
%0 Journal Article
%A Jochen Heinloth
%A Bao-Chaû Ngô
%A Zhiwei Yun
%T Kloosterman sheaves for reductive groups
%J Annals of mathematics
%D 2013
%P 241-310
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.5/
%R 10.4007/annals.2013.177.1.5
%G en
%F 10_4007_annals_2013_177_1_5
Jochen Heinloth; Bao-Chaû Ngô; Zhiwei Yun. Kloosterman sheaves for reductive groups. Annals of mathematics, Tome 177 (2013) no. 1, pp. 241-310. doi : 10.4007/annals.2013.177.1.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.5/

Cité par Sources :