Klein forms and the generalized superelliptic equation
Annals of mathematics, Tome 177 (2013) no. 1, pp. 171-239.

Voir la notice de l'article provenant de la source Annals of Mathematics website

If $F(x,y) \in \mathbb{Z}[x,y]$ is an irreducible binary form of degree $k \geq 3$, then a theorem of Darmon and Granville implies that the generalized superelliptic equation $$ F(x,y)=z^l $$ has, given an integer $l \geq \mathrm{max} \{ 2, 7-k \}$, at most finitely many solutions in coprime integers $x, y$ and $z$. In this paper, for large classes of forms of degree $k=3, 4, 6$ and $12$ (including, heuristically, “most” cubic forms), we extend this to prove a like result, where the parameter $l$ is now taken to be variable. In the case of irreducible cubic forms, this provides the first examples where such a conclusion has been proven. The method of proof combines classical invariant theory, modular Galois representations, and properties of elliptic curves with isomorphic mod-$n$ Galois representations.
DOI : 10.4007/annals.2013.177.1.4

Michael A. Bennett 1 ; Sander R. Dahmen 2

1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2
2 Mathematisches Instituut, Universiteit Utrecht, P. O. Box 80 010, 3508 TA Utrecht ,The Netherlands
@article{10_4007_annals_2013_177_1_4,
     author = {Michael A. Bennett and Sander R. Dahmen},
     title = {Klein forms and the generalized superelliptic equation},
     journal = {Annals of mathematics},
     pages = {171--239},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2013},
     doi = {10.4007/annals.2013.177.1.4},
     mrnumber = {2999040},
     zbl = {06146419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.4/}
}
TY  - JOUR
AU  - Michael A. Bennett
AU  - Sander R. Dahmen
TI  - Klein forms and the generalized superelliptic equation
JO  - Annals of mathematics
PY  - 2013
SP  - 171
EP  - 239
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.4/
DO  - 10.4007/annals.2013.177.1.4
LA  - en
ID  - 10_4007_annals_2013_177_1_4
ER  - 
%0 Journal Article
%A Michael A. Bennett
%A Sander R. Dahmen
%T Klein forms and the generalized superelliptic equation
%J Annals of mathematics
%D 2013
%P 171-239
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.4/
%R 10.4007/annals.2013.177.1.4
%G en
%F 10_4007_annals_2013_177_1_4
Michael A. Bennett; Sander R. Dahmen. Klein forms and the generalized superelliptic equation. Annals of mathematics, Tome 177 (2013) no. 1, pp. 171-239. doi : 10.4007/annals.2013.177.1.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.4/

Cité par Sources :