Isoparametric hypersurfaces with $(g,m)=(6,2)$
Annals of mathematics, Tome 177 (2013) no. 1, pp. 53-110.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that isoparametric hypersurfaces with $(g,m)=(6,2)$ are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and solves Yau’s problem in the case $g=6$.
DOI : 10.4007/annals.2013.177.1.2

Reiko Miyaoka 1

1 Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
@article{10_4007_annals_2013_177_1_2,
     author = {Reiko Miyaoka},
     title = {Isoparametric hypersurfaces with $(g,m)=(6,2)$},
     journal = {Annals of mathematics},
     pages = {53--110},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2013},
     doi = {10.4007/annals.2013.177.1.2},
     mrnumber = {2999038},
     zbl = {06146417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.2/}
}
TY  - JOUR
AU  - Reiko Miyaoka
TI  - Isoparametric hypersurfaces with $(g,m)=(6,2)$
JO  - Annals of mathematics
PY  - 2013
SP  - 53
EP  - 110
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.2/
DO  - 10.4007/annals.2013.177.1.2
LA  - en
ID  - 10_4007_annals_2013_177_1_2
ER  - 
%0 Journal Article
%A Reiko Miyaoka
%T Isoparametric hypersurfaces with $(g,m)=(6,2)$
%J Annals of mathematics
%D 2013
%P 53-110
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.2/
%R 10.4007/annals.2013.177.1.2
%G en
%F 10_4007_annals_2013_177_1_2
Reiko Miyaoka. Isoparametric hypersurfaces with $(g,m)=(6,2)$. Annals of mathematics, Tome 177 (2013) no. 1, pp. 53-110. doi : 10.4007/annals.2013.177.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.2/

Cité par Sources :