Linearization of generalized interval exchange maps
Annals of mathematics, Tome 176 (2012) no. 3, pp. 1583-1646.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A standard interval exchange map is a one-to-one map of the interval that is locally a translation except at finitely many singularities. We define for such maps, in terms of the Rauzy-Veech continuous fraction algorithm, a diophantine arithmetical condition called restricted Roth type, which is almost surely satisfied in parameter space. Let $T_0$ be a standard interval exchange map of restricted Roth type, and let $r$ be an integer $\geq 2$. We prove that, amongst $C^{r+3}$ deformations of $T_0$ that are $C^{r+3}$ tangent to $T_0$ at the singularities, those that are conjugated to $T_0$ by a $C^r$-diffeomorphism close to the identity form a $C^1$-submanifold of codimension $(g-1)(2r+1) +s$. Here, $g$ is the genus and $s$ is the number of marked points of the translation surface obtained by suspension of $T_0$. Both $g$ and $s$ can be computed from the combinatorics of $T_0$.
DOI : 10.4007/annals.2012.176.3.5

Stefano Marmi 1 ; Pierre Moussa 2 ; Jean-Christophe Yoccoz 3

1 Scuola Normale<br/>Superiore<br/> Piazza dei Cavalieri, 7<br/> I-56100 Pisa<br/>Italy
2 Institut de Physique Théorique<br/> CEA/Saclay<br/>91191 Gif-Sur-Yvette<br/> France
3 Collège de France<br/> 75231 Paris Cedex 05<br/> France
@article{10_4007_annals_2012_176_3_5,
     author = {Stefano Marmi and Pierre Moussa and Jean-Christophe Yoccoz},
     title = {Linearization of generalized interval exchange maps},
     journal = {Annals of mathematics},
     pages = {1583--1646},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.176.3.5},
     mrnumber = {2979859},
     zbl = {06121649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.5/}
}
TY  - JOUR
AU  - Stefano Marmi
AU  - Pierre Moussa
AU  - Jean-Christophe Yoccoz
TI  - Linearization of generalized interval exchange maps
JO  - Annals of mathematics
PY  - 2012
SP  - 1583
EP  - 1646
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.5/
DO  - 10.4007/annals.2012.176.3.5
LA  - en
ID  - 10_4007_annals_2012_176_3_5
ER  - 
%0 Journal Article
%A Stefano Marmi
%A Pierre Moussa
%A Jean-Christophe Yoccoz
%T Linearization of generalized interval exchange maps
%J Annals of mathematics
%D 2012
%P 1583-1646
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.5/
%R 10.4007/annals.2012.176.3.5
%G en
%F 10_4007_annals_2012_176_3_5
Stefano Marmi; Pierre Moussa; Jean-Christophe Yoccoz. Linearization of generalized interval exchange maps. Annals of mathematics, Tome 176 (2012) no. 3, pp. 1583-1646. doi : 10.4007/annals.2012.176.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.5/

Cité par Sources :