The second fundamental theorem of invariant theory for the orthogonal group
Annals of mathematics, Tome 176 (2012) no. 3, pp. 2031-2054.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $V=\mathbb{C}^n$ be endowed with an orthogonal form and $G=\mathrm{O}(V)$ be the corresponding orthogonal group. Brauer showed in 1937 that there is a surjective homomorphism $\nu:B_r(n)\to\mathrm{End}_G(V^{\otimes r})$, where $B_r(n)$ is the $r$-string Brauer algebra with parameter $n$. However the kernel of $\nu$ has remained elusive. In this paper we show that, in analogy with the case of $\mathrm{GL}(V)$, for $r\geq n+1$, $\nu$ has a kernel which is generated by a single idempotent element $E$, and we give a simple explicit formula for $E$. Using the theory of cellular algebras, we show how $E$ may be used to determine the multiplicities of the irreducible representations of $\mathrm{O}(V)$ in $V^{\otimes r}$. We also show how our results extend to the case where $\mathbb{C}$ is replaced by an appropriate field of positive characteristic, and we comment on quantum analogues of our results.
DOI : 10.4007/annals.2012.176.3.12

Gustav Lehrer 1 ; Ruibin Zhang 2

1 School of Mathematics and Statistics<br/> University of Sydney<br/> Sydney NSW 2006<br/> Australia
2 School of Mathematics and Statistics<br/> University of Sydney<br/> Sydney NSW 2006<br/>Australia
@article{10_4007_annals_2012_176_3_12,
     author = {Gustav Lehrer and Ruibin Zhang},
     title = {The second fundamental theorem of  invariant theory for the orthogonal group},
     journal = {Annals of mathematics},
     pages = {2031--2054},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.176.3.12},
     mrnumber = {2979865},
     zbl = {06121656},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.12/}
}
TY  - JOUR
AU  - Gustav Lehrer
AU  - Ruibin Zhang
TI  - The second fundamental theorem of  invariant theory for the orthogonal group
JO  - Annals of mathematics
PY  - 2012
SP  - 2031
EP  - 2054
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.12/
DO  - 10.4007/annals.2012.176.3.12
LA  - en
ID  - 10_4007_annals_2012_176_3_12
ER  - 
%0 Journal Article
%A Gustav Lehrer
%A Ruibin Zhang
%T The second fundamental theorem of  invariant theory for the orthogonal group
%J Annals of mathematics
%D 2012
%P 2031-2054
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.12/
%R 10.4007/annals.2012.176.3.12
%G en
%F 10_4007_annals_2012_176_3_12
Gustav Lehrer; Ruibin Zhang. The second fundamental theorem of  invariant theory for the orthogonal group. Annals of mathematics, Tome 176 (2012) no. 3, pp. 2031-2054. doi : 10.4007/annals.2012.176.3.12. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.12/

Cité par Sources :