The Nash problem for surfaces
Annals of mathematics, Tome 176 (2012) no. 3, pp. 2003-2029.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that Nash mapping is bijective for any surface defined over an algebraically closed field of characteristic $0$.
DOI : 10.4007/annals.2012.176.3.11

Javier Fernández de Bobadilla  1 ; María Pe Pereira 2

1 ICMAT<br/> CSIC-UAM-UCM-UC3M<br/> 28040 Madrid<br/> Spain
2 ICMAT<br/> CSIC-UAM-UCM-UC3M<br/> 28040 Madrid<br/> Spain
@article{10_4007_annals_2012_176_3_11,
     author = {Javier Fern\'andez de Bobadilla  and Mar{\'\i}a Pe Pereira},
     title = {The {Nash} problem for surfaces},
     journal = {Annals of mathematics},
     pages = {2003--2029},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.176.3.11},
     mrnumber = {2979864},
     zbl = {06121655},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.11/}
}
TY  - JOUR
AU  - Javier Fernández de Bobadilla 
AU  - María Pe Pereira
TI  - The Nash problem for surfaces
JO  - Annals of mathematics
PY  - 2012
SP  - 2003
EP  - 2029
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.11/
DO  - 10.4007/annals.2012.176.3.11
LA  - en
ID  - 10_4007_annals_2012_176_3_11
ER  - 
%0 Journal Article
%A Javier Fernández de Bobadilla 
%A María Pe Pereira
%T The Nash problem for surfaces
%J Annals of mathematics
%D 2012
%P 2003-2029
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.11/
%R 10.4007/annals.2012.176.3.11
%G en
%F 10_4007_annals_2012_176_3_11
Javier Fernández de Bobadilla ; María Pe Pereira. The Nash problem for surfaces. Annals of mathematics, Tome 176 (2012) no. 3, pp. 2003-2029. doi : 10.4007/annals.2012.176.3.11. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.11/

Cité par Sources :