Thom polynomials measure how global topology forces singularities. The power of Thom polynomials predestine them to be a useful tool not only in differential topology, but also in algebraic geometry (enumerative geometry, moduli spaces) and algebraic combinatorics. The main obstacle of their widespread application is that only a few, sporadic Thom polynomials have been known explicitly. In this paper we develop a general method for calculating Thom polynomials of singularities. Along the way, relations with the equivariant geometry of (punctual, local) Hilbert schemes and with iterated residue identities are revealed.
L. M. Fehér 1 ; R. Rimányi 2
@article{10_4007_annals_2012_176_3_1,
author = {L. M. Feh\'er and R. Rim\'anyi},
title = {Thom series of contact singularities},
journal = {Annals of mathematics},
pages = {1381--1426},
year = {2012},
volume = {176},
number = {3},
doi = {10.4007/annals.2012.176.3.1},
mrnumber = {2979854},
zbl = {06121645},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.1/}
}
TY - JOUR AU - L. M. Fehér AU - R. Rimányi TI - Thom series of contact singularities JO - Annals of mathematics PY - 2012 SP - 1381 EP - 1426 VL - 176 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.3.1/ DO - 10.4007/annals.2012.176.3.1 LA - en ID - 10_4007_annals_2012_176_3_1 ER -
L. M. Fehér; R. Rimányi. Thom series of contact singularities. Annals of mathematics, Tome 176 (2012) no. 3, pp. 1381-1426. doi: 10.4007/annals.2012.176.3.1
Cité par Sources :