Complex multiplication cycles and Kudla-Rapoport divisors
Annals of mathematics, Tome 176 (2012) no. 2, pp. 1097-1171.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study the intersections of special cycles on a unitary Shimura variety of signature $(n-1,1)$ and show that the intersection multiplicities of these cycles agree with Fourier coefficients of Eisenstein series. The results are new cases of conjectures of Kudla and suggest a Gross-Zagier theorem for unitary Shimura varieties.
DOI : 10.4007/annals.2012.176.2.9

Benjamin Howard 1

1 Department of Mathematics, Boston College, Chestnut Hill, MA 92467
@article{10_4007_annals_2012_176_2_9,
     author = {Benjamin Howard},
     title = {Complex multiplication cycles and  {Kudla-Rapoport} divisors},
     journal = {Annals of mathematics},
     pages = {1097--1171},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.176.2.9},
     mrnumber = {2950771},
     zbl = {06093948},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.9/}
}
TY  - JOUR
AU  - Benjamin Howard
TI  - Complex multiplication cycles and  Kudla-Rapoport divisors
JO  - Annals of mathematics
PY  - 2012
SP  - 1097
EP  - 1171
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.9/
DO  - 10.4007/annals.2012.176.2.9
LA  - en
ID  - 10_4007_annals_2012_176_2_9
ER  - 
%0 Journal Article
%A Benjamin Howard
%T Complex multiplication cycles and  Kudla-Rapoport divisors
%J Annals of mathematics
%D 2012
%P 1097-1171
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.9/
%R 10.4007/annals.2012.176.2.9
%G en
%F 10_4007_annals_2012_176_2_9
Benjamin Howard. Complex multiplication cycles and  Kudla-Rapoport divisors. Annals of mathematics, Tome 176 (2012) no. 2, pp. 1097-1171. doi : 10.4007/annals.2012.176.2.9. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.9/

Cité par Sources :