Langlands base change for $\mathrm{GL}(2)$
Annals of mathematics, Tome 176 (2012) no. 2, pp. 1015-1038.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $F$ be a totally real Galois number field. We prove the existence of base change relative to the extension $F/\mathbb{Q}$ for every holomorphic newform of weight at least $2$ and odd level, under simple local assumptions on the field $F$.
DOI : 10.4007/annals.2012.176.2.7

Luis Dieulefait 1

1 Departament d'Àlgebra i Geometria, Universitat de Barcelona<br/> Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
@article{10_4007_annals_2012_176_2_7,
     author = {Luis Dieulefait},
     title = {Langlands base change for $\mathrm{GL}(2)$},
     journal = {Annals of mathematics},
     pages = {1015--1038},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.176.2.7},
     mrnumber = {2950769},
     zbl = {06093946},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.7/}
}
TY  - JOUR
AU  - Luis Dieulefait
TI  - Langlands base change for $\mathrm{GL}(2)$
JO  - Annals of mathematics
PY  - 2012
SP  - 1015
EP  - 1038
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.7/
DO  - 10.4007/annals.2012.176.2.7
LA  - en
ID  - 10_4007_annals_2012_176_2_7
ER  - 
%0 Journal Article
%A Luis Dieulefait
%T Langlands base change for $\mathrm{GL}(2)$
%J Annals of mathematics
%D 2012
%P 1015-1038
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.7/
%R 10.4007/annals.2012.176.2.7
%G en
%F 10_4007_annals_2012_176_2_7
Luis Dieulefait. Langlands base change for $\mathrm{GL}(2)$. Annals of mathematics, Tome 176 (2012) no. 2, pp. 1015-1038. doi : 10.4007/annals.2012.176.2.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.7/

Cité par Sources :