Voir la notice de l'article provenant de la source Annals of Mathematics website
J. William Helton 1 ; Scott McCullough 2
@article{10_4007_annals_2012_176_2_6, author = {J. William Helton and Scott McCullough}, title = {Every convex free basic semi-algebraic set has an {LMI} representation}, journal = {Annals of mathematics}, pages = {979--1013}, publisher = {mathdoc}, volume = {176}, number = {2}, year = {2012}, doi = {10.4007/annals.2012.176.2.6}, mrnumber = {2950768}, zbl = {06093945}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.6/} }
TY - JOUR AU - J. William Helton AU - Scott McCullough TI - Every convex free basic semi-algebraic set has an LMI representation JO - Annals of mathematics PY - 2012 SP - 979 EP - 1013 VL - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.6/ DO - 10.4007/annals.2012.176.2.6 LA - en ID - 10_4007_annals_2012_176_2_6 ER -
%0 Journal Article %A J. William Helton %A Scott McCullough %T Every convex free basic semi-algebraic set has an LMI representation %J Annals of mathematics %D 2012 %P 979-1013 %V 176 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.6/ %R 10.4007/annals.2012.176.2.6 %G en %F 10_4007_annals_2012_176_2_6
J. William Helton; Scott McCullough. Every convex free basic semi-algebraic set has an LMI representation. Annals of mathematics, Tome 176 (2012) no. 2, pp. 979-1013. doi : 10.4007/annals.2012.176.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.6/
Cité par Sources :