An inverse theorem for the Gowers $U^{s+1}[N]$-norm
Annals of mathematics, Tome 176 (2012) no. 2, pp. 1231-1372.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the inverse conjecture for the Gowers $U^{s+1}[N]$-norm for all $s \geq 1$; this is new for $s \geq 4$. More precisely, we establish that if $f : [N] \rightarrow [-1,1]$ is a function with $\Vert f \Vert_{U^{s+1}[N]} \geq \delta$, then there is a bounded-complexity $s$-step nilsequence $F(g(n)\Gamma)$ that correlates with $f$, where the bounds on the complexity and correlation depend only on $s$ and $\delta$. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity.
DOI : 10.4007/annals.2012.176.2.11

Ben Green 1 ; Terence Tao 2 ; Tamar Ziegler 3

1 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
2 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095-1555
3 Mathematics Department, Technion - Israel Institute of Technology, Haifa, 32000, Israel
@article{10_4007_annals_2012_176_2_11,
     author = {Ben Green and Terence Tao and Tamar Ziegler},
     title = {An inverse theorem for  the {Gowers} $U^{s+1}[N]$-norm},
     journal = {Annals of mathematics},
     pages = {1231--1372},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.176.2.11},
     mrnumber = {2950773},
     zbl = {06093950},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/}
}
TY  - JOUR
AU  - Ben Green
AU  - Terence Tao
AU  - Tamar Ziegler
TI  - An inverse theorem for  the Gowers $U^{s+1}[N]$-norm
JO  - Annals of mathematics
PY  - 2012
SP  - 1231
EP  - 1372
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/
DO  - 10.4007/annals.2012.176.2.11
LA  - en
ID  - 10_4007_annals_2012_176_2_11
ER  - 
%0 Journal Article
%A Ben Green
%A Terence Tao
%A Tamar Ziegler
%T An inverse theorem for  the Gowers $U^{s+1}[N]$-norm
%J Annals of mathematics
%D 2012
%P 1231-1372
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/
%R 10.4007/annals.2012.176.2.11
%G en
%F 10_4007_annals_2012_176_2_11
Ben Green; Terence Tao; Tamar Ziegler. An inverse theorem for  the Gowers $U^{s+1}[N]$-norm. Annals of mathematics, Tome 176 (2012) no. 2, pp. 1231-1372. doi : 10.4007/annals.2012.176.2.11. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/

Cité par Sources :