Voir la notice de l'article provenant de la source Annals of Mathematics website
Ben Green 1 ; Terence Tao 2 ; Tamar Ziegler 3
@article{10_4007_annals_2012_176_2_11, author = {Ben Green and Terence Tao and Tamar Ziegler}, title = {An inverse theorem for the {Gowers} $U^{s+1}[N]$-norm}, journal = {Annals of mathematics}, pages = {1231--1372}, publisher = {mathdoc}, volume = {176}, number = {2}, year = {2012}, doi = {10.4007/annals.2012.176.2.11}, mrnumber = {2950773}, zbl = {06093950}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/} }
TY - JOUR AU - Ben Green AU - Terence Tao AU - Tamar Ziegler TI - An inverse theorem for the Gowers $U^{s+1}[N]$-norm JO - Annals of mathematics PY - 2012 SP - 1231 EP - 1372 VL - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/ DO - 10.4007/annals.2012.176.2.11 LA - en ID - 10_4007_annals_2012_176_2_11 ER -
%0 Journal Article %A Ben Green %A Terence Tao %A Tamar Ziegler %T An inverse theorem for the Gowers $U^{s+1}[N]$-norm %J Annals of mathematics %D 2012 %P 1231-1372 %V 176 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/ %R 10.4007/annals.2012.176.2.11 %G en %F 10_4007_annals_2012_176_2_11
Ben Green; Terence Tao; Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Annals of mathematics, Tome 176 (2012) no. 2, pp. 1231-1372. doi : 10.4007/annals.2012.176.2.11. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.2.11/
Cité par Sources :