Rational points over finite fields for regular models of algebraic varieties of Hodge type $\geq 1$
Annals of mathematics, Tome 176 (2012) no. 1, pp. 413-508.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $R$ be a discrete valuation ring of mixed characteristics $(0,p)$, with finite residue field $k$ and fraction field $K$, let $k’$ be a finite extension of $k$, and let $X$ be a regular, proper and flat $R$-scheme, with generic fibre $X_K$ and special fibre $X_k$. Assume that $X_K$ is geometrically connected and of Hodge type $\geq 1$ in positive degrees. Then we show that the number of $k’$-rational points of $X$ satisfies the congruence $|X(k’)| \equiv 1$ mod $|k’|$. We deduce such congruences from a vanishing theorem for the Witt cohomology groups $H^q(X_k, W\mathcal{O}_{X_k,\mathbb{Q}})$ for $q > 0$. In our proof of this last result, a key step is the construction of a trace morphism between the Witt cohomologies of the special fibres of two flat regular $R$-schemes $X$ and $Y$ of the same dimension, defined by a surjective projective morphism $f : Y \to X$.
DOI : 10.4007/annals.2012.176.1.8

Pierre Berthelot 1 ; Hélène Esnault 2 ; Kay Rülling 2

1 IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
2 Universität Duisburg-Essen, Fachbereich Mathematik, Campus Essen, 45117 Essen, Germany
@article{10_4007_annals_2012_176_1_8,
     author = {Pierre Berthelot and H\'el\`ene Esnault and Kay R\"ulling},
     title = {Rational points over finite fields for regular models of algebraic varieties of {Hodge} type $\geq 1$},
     journal = {Annals of mathematics},
     pages = {413--508},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.176.1.8},
     mrnumber = {2925388},
     zbl = {1254.14019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.8/}
}
TY  - JOUR
AU  - Pierre Berthelot
AU  - Hélène Esnault
AU  - Kay Rülling
TI  - Rational points over finite fields for regular models of algebraic varieties of Hodge type $\geq 1$
JO  - Annals of mathematics
PY  - 2012
SP  - 413
EP  - 508
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.8/
DO  - 10.4007/annals.2012.176.1.8
LA  - en
ID  - 10_4007_annals_2012_176_1_8
ER  - 
%0 Journal Article
%A Pierre Berthelot
%A Hélène Esnault
%A Kay Rülling
%T Rational points over finite fields for regular models of algebraic varieties of Hodge type $\geq 1$
%J Annals of mathematics
%D 2012
%P 413-508
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.8/
%R 10.4007/annals.2012.176.1.8
%G en
%F 10_4007_annals_2012_176_1_8
Pierre Berthelot; Hélène Esnault; Kay Rülling. Rational points over finite fields for regular models of algebraic varieties of Hodge type $\geq 1$. Annals of mathematics, Tome 176 (2012) no. 1, pp. 413-508. doi : 10.4007/annals.2012.176.1.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.8/

Cité par Sources :