An effective result of André-Oort type
Annals of mathematics, Tome 176 (2012) no. 1, pp. 651-671.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Using transcendence theory we prove the André-Oort conjecture in case of the Shimura variety $\mathbb{A}_{\mathbb{C}}^{2}$. It is well known that this result implies the André-Oort conjecture for a product of two arbitrary modular curves. In contrast to all previous proofs we obtain a result that is at once effective and unconditional.
DOI : 10.4007/annals.2012.176.1.13

Lars Kühne 1

1 Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
@article{10_4007_annals_2012_176_1_13,
     author = {Lars K\"uhne},
     title = {An effective result of {Andr\'e-Oort} type},
     journal = {Annals of mathematics},
     pages = {651--671},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.176.1.13},
     mrnumber = {2925393},
     zbl = {06074024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.13/}
}
TY  - JOUR
AU  - Lars Kühne
TI  - An effective result of André-Oort type
JO  - Annals of mathematics
PY  - 2012
SP  - 651
EP  - 671
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.13/
DO  - 10.4007/annals.2012.176.1.13
LA  - en
ID  - 10_4007_annals_2012_176_1_13
ER  - 
%0 Journal Article
%A Lars Kühne
%T An effective result of André-Oort type
%J Annals of mathematics
%D 2012
%P 651-671
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.13/
%R 10.4007/annals.2012.176.1.13
%G en
%F 10_4007_annals_2012_176_1_13
Lars Kühne. An effective result of André-Oort type. Annals of mathematics, Tome 176 (2012) no. 1, pp. 651-671. doi : 10.4007/annals.2012.176.1.13. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.13/

Cité par Sources :