Finiteness of central configurations of five bodies in the plane
Annals of mathematics, Tome 176 (2012) no. 1, pp. 535-588.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove there are finitely many isometry classes of planar central configurations (also called relative equilibria) in the Newtonian 5-body problem, except perhaps if the 5-tuple of positive masses belongs to a given codimension 2 subvariety of the mass space.
DOI : 10.4007/annals.2012.176.1.10

Alain Albouy 1 ; Vadim Kaloshin 2

1 CNRS-UMR8028, Observatoire de Paris, 77, avenue Denfert-Rochereau, 75014 Paris, France
2 Department of Mathematics, University of Maryland, College Park, MD 20742-4015
@article{10_4007_annals_2012_176_1_10,
     author = {Alain Albouy and Vadim Kaloshin},
     title = {Finiteness of central configurations of five bodies in the plane},
     journal = {Annals of mathematics},
     pages = {535--588},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.176.1.10},
     mrnumber = {2925390},
     zbl = {06074021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.10/}
}
TY  - JOUR
AU  - Alain Albouy
AU  - Vadim Kaloshin
TI  - Finiteness of central configurations of five bodies in the plane
JO  - Annals of mathematics
PY  - 2012
SP  - 535
EP  - 588
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.10/
DO  - 10.4007/annals.2012.176.1.10
LA  - en
ID  - 10_4007_annals_2012_176_1_10
ER  - 
%0 Journal Article
%A Alain Albouy
%A Vadim Kaloshin
%T Finiteness of central configurations of five bodies in the plane
%J Annals of mathematics
%D 2012
%P 535-588
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.10/
%R 10.4007/annals.2012.176.1.10
%G en
%F 10_4007_annals_2012_176_1_10
Alain Albouy; Vadim Kaloshin. Finiteness of central configurations of five bodies in the plane. Annals of mathematics, Tome 176 (2012) no. 1, pp. 535-588. doi : 10.4007/annals.2012.176.1.10. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.10/

Cité par Sources :