The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere
Annals of mathematics, Tome 175 (2012) no. 3, pp. 1093-1125.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the conjecture, posed in 1993 by Bolton and Woodward, that the dimension of the space of harmonic maps from the 2-sphere to the $2n$-sphere is $2d+n^2$. We also give an explicit algebraic method to construct all harmonic maps from the 2-sphere to the $m$-sphere.
DOI : 10.4007/annals.2012.175.3.3

Luis Fernández  1

1 Department of Mathematics and Computer Science, Bronx Community College (CUNY), 2155 University Avenue, Bronx, NY 10453
@article{10_4007_annals_2012_175_3_3,
     author = {Luis Fern\'andez },
     title = {The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere},
     journal = {Annals of mathematics},
     pages = {1093--1125},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.175.3.3},
     mrnumber = {2912703},
     zbl = {06051268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.3/}
}
TY  - JOUR
AU  - Luis Fernández 
TI  - The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere
JO  - Annals of mathematics
PY  - 2012
SP  - 1093
EP  - 1125
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.3/
DO  - 10.4007/annals.2012.175.3.3
LA  - en
ID  - 10_4007_annals_2012_175_3_3
ER  - 
%0 Journal Article
%A Luis Fernández 
%T The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere
%J Annals of mathematics
%D 2012
%P 1093-1125
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.3/
%R 10.4007/annals.2012.175.3.3
%G en
%F 10_4007_annals_2012_175_3_3
Luis Fernández . The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere. Annals of mathematics, Tome 175 (2012) no. 3, pp. 1093-1125. doi : 10.4007/annals.2012.175.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.3/

Cité par Sources :