The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$
Annals of mathematics, Tome 175 (2012) no. 3, pp. 1653-1665.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to $\sqrt{2+\sqrt{2}}$. This value has been derived nonrigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self-avoiding walk, which satisfies a half of the discrete Cauchy-Riemann relations. Establishing the other half of the relations (which conjecturally holds in the scaling limit) would also imply convergence of the self-avoiding walk to SLE($8/3$).
DOI : 10.4007/annals.2012.175.3.14

Hugo Duminil-Copin 1 ; Stanislav Smirnov 2

1 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, case postale 64 1211, Genève 4, Switzerland
2 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, case postale 64 1211, Genève 4, Switzerland and Chebyshev Laboratory, St. Petersburg State University, Saint Petersburg 199178, Russia
@article{10_4007_annals_2012_175_3_14,
     author = {Hugo Duminil-Copin and Stanislav Smirnov},
     title = {The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$},
     journal = {Annals of mathematics},
     pages = {1653--1665},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.175.3.14},
     mrnumber = {2912714},
     zbl = {06051279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.14/}
}
TY  - JOUR
AU  - Hugo Duminil-Copin
AU  - Stanislav Smirnov
TI  - The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$
JO  - Annals of mathematics
PY  - 2012
SP  - 1653
EP  - 1665
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.14/
DO  - 10.4007/annals.2012.175.3.14
LA  - en
ID  - 10_4007_annals_2012_175_3_14
ER  - 
%0 Journal Article
%A Hugo Duminil-Copin
%A Stanislav Smirnov
%T The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$
%J Annals of mathematics
%D 2012
%P 1653-1665
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.14/
%R 10.4007/annals.2012.175.3.14
%G en
%F 10_4007_annals_2012_175_3_14
Hugo Duminil-Copin; Stanislav Smirnov. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$. Annals of mathematics, Tome 175 (2012) no. 3, pp. 1653-1665. doi : 10.4007/annals.2012.175.3.14. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.14/

Cité par Sources :