On sharp transitions in making squares
Annals of mathematics, Tome 175 (2012) no. 3, pp. 1507-1550.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In the fastest-performing integer factoring algorithms, one creates a sequence of integers (in a pseudo-random way) and wishes to rapidly determine a subsequence whose product is a square. In 1994 Pomerance stated the following problem which encapsulates all of the key issues: Select integers $a_1,a_2,\dots,$ at random from the interval $[1,x]$, until some (nonempty) subsequence has product equal to a square. Find a good estimate for the expected stopping time of this process. A good solution should allow one to determine the optimal choice of parameters in many factoring algorithms.
Pomerance (1994), using an idea of Schroeppel (1985), showed that with probability $1-o(1)$ the first subsequence whose product equals a square occurs after at least $J_0^{1-o(1)}$ integers have been selected, but no more than $J_0$, for an appropriate (explicitly determined) $J_0=J_0(x)$. We tighten Pomerance’s interval to $$ [ (\pi/4)(e^{-\gamma} – o(1))J_0, (e^{-\gamma} + o(1)) J_0], $$ where $\gamma = 0.577…$ is the Euler-Mascheroni constant, and believe that the correct interval is $[ (e^{-\gamma} – o(1))J_0, (e^{-\gamma} + o(1)) J_0]$, a “sharp threshold”. In our proof we confirm the well-established belief that, typically, none of the integers in the square product have large prime factors.
The heart of the proof of our upper bound lies in delicate calculations in probabilistic graph theory, supported by comparative estimates on smooth numbers using precise information on saddle points.
DOI : 10.4007/annals.2012.175.3.10

Ernie Croot 1 ; Andrew Granville 2 ; Robin Pemantle 3 ; Prasad Tetali 4

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160
2 Dépt. de mathématiques et de statistiques, Université de Montréal, CP 6128, succ. Centre-Ville, Montréal QC H3C 3J7, Canada
3 Department of Mathematics, David Rittenhouse Laboratories, 209 S. 33rd Street, University of Pennsylvania, Philadelphia, PA 19104-6395
4 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160
@article{10_4007_annals_2012_175_3_10,
     author = {Ernie Croot and Andrew Granville and Robin Pemantle and Prasad Tetali},
     title = {On sharp transitions in making squares},
     journal = {Annals of mathematics},
     pages = {1507--1550},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2012},
     doi = {10.4007/annals.2012.175.3.10},
     mrnumber = {2912710},
     zbl = {06051275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.10/}
}
TY  - JOUR
AU  - Ernie Croot
AU  - Andrew Granville
AU  - Robin Pemantle
AU  - Prasad Tetali
TI  - On sharp transitions in making squares
JO  - Annals of mathematics
PY  - 2012
SP  - 1507
EP  - 1550
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.10/
DO  - 10.4007/annals.2012.175.3.10
LA  - en
ID  - 10_4007_annals_2012_175_3_10
ER  - 
%0 Journal Article
%A Ernie Croot
%A Andrew Granville
%A Robin Pemantle
%A Prasad Tetali
%T On sharp transitions in making squares
%J Annals of mathematics
%D 2012
%P 1507-1550
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.10/
%R 10.4007/annals.2012.175.3.10
%G en
%F 10_4007_annals_2012_175_3_10
Ernie Croot; Andrew Granville; Robin Pemantle; Prasad Tetali. On sharp transitions in making squares. Annals of mathematics, Tome 175 (2012) no. 3, pp. 1507-1550. doi : 10.4007/annals.2012.175.3.10. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.3.10/

Cité par Sources :