The Weil-Petersson geodesic flow is ergodic
Annals of mathematics, Tome 175 (2012) no. 2, pp. 835-908.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the geodesic flow for the Weil-Petersson metric on the moduli space of Riemann surfaces is ergodic (and in fact Bernoulli) and has finite, positive metric entropy.
DOI : 10.4007/annals.2012.175.2.8

Keith Burns 1 ; Howard Masur 2 ; Amie Wilkinson 3

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730
2 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637
3 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637
@article{10_4007_annals_2012_175_2_8,
     author = {Keith Burns and Howard Masur and Amie Wilkinson},
     title = {The {Weil-Petersson} geodesic flow is ergodic},
     journal = {Annals of mathematics},
     pages = {835--908},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.175.2.8},
     mrnumber = {2993753},
     zbl = {06025003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.8/}
}
TY  - JOUR
AU  - Keith Burns
AU  - Howard Masur
AU  - Amie Wilkinson
TI  - The Weil-Petersson geodesic flow is ergodic
JO  - Annals of mathematics
PY  - 2012
SP  - 835
EP  - 908
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.8/
DO  - 10.4007/annals.2012.175.2.8
LA  - en
ID  - 10_4007_annals_2012_175_2_8
ER  - 
%0 Journal Article
%A Keith Burns
%A Howard Masur
%A Amie Wilkinson
%T The Weil-Petersson geodesic flow is ergodic
%J Annals of mathematics
%D 2012
%P 835-908
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.8/
%R 10.4007/annals.2012.175.2.8
%G en
%F 10_4007_annals_2012_175_2_8
Keith Burns; Howard Masur; Amie Wilkinson. The Weil-Petersson geodesic flow is ergodic. Annals of mathematics, Tome 175 (2012) no. 2, pp. 835-908. doi : 10.4007/annals.2012.175.2.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.8/

Cité par Sources :