Generic mean curvature flow I; generic singularities
Annals of mathematics, Tome 175 (2012) no. 2, pp. 755-833.

Voir la notice de l'article provenant de la source Annals of Mathematics website

It has long been conjectured that starting at a generic smooth closed embedded surface in $\mathbf{R}^3$, the mean curvature flow remains smooth until it arrives at a singularity in a neighborhood of which the flow looks like concentric spheres or cylinders. That is, the only singularities of a generic flow are spherical or cylindrical. We will address this conjecture here and in a sequel. The higher dimensional case will be addressed elsewhere.
The key to showing this conjecture is to show that shrinking spheres, cylinders, and planes are the only stable self-shrinkers under the mean curvature flow. We prove this here in all dimensions. An easy consequence of this is that every singularity other than spheres and cylinders can be perturbed away.
DOI : 10.4007/annals.2012.175.2.7

Tobias H. Colding 1 ; William P. Minicozzi II 2

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
2 Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218
@article{10_4007_annals_2012_175_2_7,
     author = {Tobias H. Colding and William P. Minicozzi II},
     title = {Generic mean curvature flow {I;} generic singularities},
     journal = {Annals of mathematics},
     pages = {755--833},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.175.2.7},
     mrnumber = {2993752},
     zbl = {06025002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.7/}
}
TY  - JOUR
AU  - Tobias H. Colding
AU  - William P. Minicozzi II
TI  - Generic mean curvature flow I; generic singularities
JO  - Annals of mathematics
PY  - 2012
SP  - 755
EP  - 833
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.7/
DO  - 10.4007/annals.2012.175.2.7
LA  - en
ID  - 10_4007_annals_2012_175_2_7
ER  - 
%0 Journal Article
%A Tobias H. Colding
%A William P. Minicozzi II
%T Generic mean curvature flow I; generic singularities
%J Annals of mathematics
%D 2012
%P 755-833
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.7/
%R 10.4007/annals.2012.175.2.7
%G en
%F 10_4007_annals_2012_175_2_7
Tobias H. Colding; William P. Minicozzi II. Generic mean curvature flow I; generic singularities. Annals of mathematics, Tome 175 (2012) no. 2, pp. 755-833. doi : 10.4007/annals.2012.175.2.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.7/

Cité par Sources :