Thom polynomials of Morin singularities
Annals of mathematics, Tome 175 (2012) no. 2, pp. 567-629.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a formula for Thom polynomials of $A_d$ singularities in any codimension. We use a combination of the test-curve model of Porteous, and the localization methods in equivariant cohomology. Our formulas are independent of the codimension, and are computationally effective up to $d=6$.
DOI : 10.4007/annals.2012.175.2.4

Gergely Bérczi  1 ; András Szenes 2

1 Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, England
2 Mathematics Institute, Budapest University of Technology, Budapest 1111, Hungary
@article{10_4007_annals_2012_175_2_4,
     author = {Gergely B\'erczi  and Andr\'as Szenes},
     title = {Thom polynomials of {Morin} singularities},
     journal = {Annals of mathematics},
     pages = {567--629},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.175.2.4},
     mrnumber = {2877067},
     zbl = {1247.58021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/}
}
TY  - JOUR
AU  - Gergely Bérczi 
AU  - András Szenes
TI  - Thom polynomials of Morin singularities
JO  - Annals of mathematics
PY  - 2012
SP  - 567
EP  - 629
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/
DO  - 10.4007/annals.2012.175.2.4
LA  - en
ID  - 10_4007_annals_2012_175_2_4
ER  - 
%0 Journal Article
%A Gergely Bérczi 
%A András Szenes
%T Thom polynomials of Morin singularities
%J Annals of mathematics
%D 2012
%P 567-629
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/
%R 10.4007/annals.2012.175.2.4
%G en
%F 10_4007_annals_2012_175_2_4
Gergely Bérczi ; András Szenes. Thom polynomials of Morin singularities. Annals of mathematics, Tome 175 (2012) no. 2, pp. 567-629. doi : 10.4007/annals.2012.175.2.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/

Cité par Sources :