The Möbius function is strongly orthogonal to nilsequences
Annals of mathematics, Tome 175 (2012) no. 2, pp. 541-566.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that the Möbius function $\mu(n)$ is strongly asymptotically orthogonal to any polynomial nilsequence $(F(g(n)\Gamma))_{n \in \mathbb{N}}$. Here, $G$ is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup $\Gamma$ (so $G/\Gamma$ is a nilmanifold), $g : \mathbb{Z} \rightarrow G$ is a polynomial sequence, and $F: G/\Gamma \to \Bbb{R}$ is a Lipschitz function. More precisely, we show that $|\frac{1}{N} \sum_{n=1}^N \mu(n) F(g(n) \Gamma)| \ll_{F,G,\Gamma,A} \log^{-A} N$ for all $A > 0$. In particular, this implies the Möbius and Nilsequence conjecture $\mbox{MN}(s)$ from our earlier paper for every positive integer $s$. This is one of two major ingredients in our programme to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection $\psi_1,\dots,\psi_t : \mathbb{Z}^d \rightarrow \mathbb{Z}$ of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper.
DOI : 10.4007/annals.2012.175.2.3

Ben Green 1 ; Terence Tao 2

1 Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, England
2 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095-1596
@article{10_4007_annals_2012_175_2_3,
     author = {Ben Green and Terence Tao},
     title = {The {M\"obius} function is strongly orthogonal to nilsequences},
     journal = {Annals of mathematics},
     pages = {541--566},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.175.2.3},
     mrnumber = {2877066},
     zbl = {06024998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.3/}
}
TY  - JOUR
AU  - Ben Green
AU  - Terence Tao
TI  - The Möbius function is strongly orthogonal to nilsequences
JO  - Annals of mathematics
PY  - 2012
SP  - 541
EP  - 566
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.3/
DO  - 10.4007/annals.2012.175.2.3
LA  - en
ID  - 10_4007_annals_2012_175_2_3
ER  - 
%0 Journal Article
%A Ben Green
%A Terence Tao
%T The Möbius function is strongly orthogonal to nilsequences
%J Annals of mathematics
%D 2012
%P 541-566
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.3/
%R 10.4007/annals.2012.175.2.3
%G en
%F 10_4007_annals_2012_175_2_3
Ben Green; Terence Tao. The Möbius function is strongly orthogonal to nilsequences. Annals of mathematics, Tome 175 (2012) no. 2, pp. 541-566. doi : 10.4007/annals.2012.175.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.3/

Cité par Sources :