The quantitative behaviour of polynomial orbits on nilmanifolds
Annals of mathematics, Tome 175 (2012) no. 2, pp. 465-540.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A theorem of Leibman asserts that a polynomial orbit $(g(n)\Gamma)_{n \in \mathbb{Z}}$ on a nilmanifold $G/\Gamma$ is always equidistributed in a union of closed sub-nilmanifolds of $G/\Gamma$. In this paper we give a quantitative version of Leibman’s result, describing the uniform distribution properties of a finite polynomial orbit $(g(n)\Gamma)_{n \in [N]}$ in a nilmanifold. More specifically we show that there is a factorisation $g = \varepsilon g’ \gamma$, where $\varepsilon(n)$ is “smooth,” $(\gamma(n)\Gamma)_{n \in \mathbb{Z}}$ is periodic and “rational,” and $(g'(n)\Gamma)_{n \in P}$ is uniformly distributed (up to a specified error $\delta$) inside some subnilmanifold $G’/\Gamma’$ of $G/\Gamma$ for all sufficiently dense arithmetic progressions $P \subseteq [N]$.
DOI : 10.4007/annals.2012.175.2.2

Ben Green 1 ; Terence Tao 2

1 Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, England
2 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095-1596
@article{10_4007_annals_2012_175_2_2,
     author = {Ben Green and Terence Tao},
     title = {The quantitative behaviour of polynomial orbits on nilmanifolds},
     journal = {Annals of mathematics},
     pages = {465--540},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2012},
     doi = {10.4007/annals.2012.175.2.2},
     mrnumber = {2877065},
     zbl = {06024997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.2/}
}
TY  - JOUR
AU  - Ben Green
AU  - Terence Tao
TI  - The quantitative behaviour of polynomial orbits on nilmanifolds
JO  - Annals of mathematics
PY  - 2012
SP  - 465
EP  - 540
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.2/
DO  - 10.4007/annals.2012.175.2.2
LA  - en
ID  - 10_4007_annals_2012_175_2_2
ER  - 
%0 Journal Article
%A Ben Green
%A Terence Tao
%T The quantitative behaviour of polynomial orbits on nilmanifolds
%J Annals of mathematics
%D 2012
%P 465-540
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.2/
%R 10.4007/annals.2012.175.2.2
%G en
%F 10_4007_annals_2012_175_2_2
Ben Green; Terence Tao. The quantitative behaviour of polynomial orbits on nilmanifolds. Annals of mathematics, Tome 175 (2012) no. 2, pp. 465-540. doi : 10.4007/annals.2012.175.2.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.2/

Cité par Sources :