Knots and links in steady solutions of the Euler equation
Annals of mathematics, Tome 175 (2012) no. 1, pp. 345-367.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given any possibly unbounded, locally finite link, we show that there exists a smooth diffeomorphism transforming this link into a set of stream (or vortex) lines of a vector field that solves the steady incompressible Euler equation in $\mathbb{R}^3$. Furthermore, the diffeomorphism can be chosen arbitrarily close to the identity in any $C^r$ norm.
DOI : 10.4007/annals.2012.175.1.9

Alberto Enciso 1 ; Daniel Peralta-Salas 1

1 Instituto de Ciencias Matemáticas<br/> CSIC-UAM-UC3M-UCM<br/> C/ Serrano 123<br/> 28006 Madrid<br/> Spain
@article{10_4007_annals_2012_175_1_9,
     author = {Alberto Enciso and Daniel Peralta-Salas},
     title = {Knots and links in steady solutions of the {Euler} equation},
     journal = {Annals of mathematics},
     pages = {345--367},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.175.1.9},
     mrnumber = {2874645},
     zbl = {06014078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.9/}
}
TY  - JOUR
AU  - Alberto Enciso
AU  - Daniel Peralta-Salas
TI  - Knots and links in steady solutions of the Euler equation
JO  - Annals of mathematics
PY  - 2012
SP  - 345
EP  - 367
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.9/
DO  - 10.4007/annals.2012.175.1.9
LA  - en
ID  - 10_4007_annals_2012_175_1_9
ER  - 
%0 Journal Article
%A Alberto Enciso
%A Daniel Peralta-Salas
%T Knots and links in steady solutions of the Euler equation
%J Annals of mathematics
%D 2012
%P 345-367
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.9/
%R 10.4007/annals.2012.175.1.9
%G en
%F 10_4007_annals_2012_175_1_9
Alberto Enciso; Daniel Peralta-Salas. Knots and links in steady solutions of the Euler equation. Annals of mathematics, Tome 175 (2012) no. 1, pp. 345-367. doi : 10.4007/annals.2012.175.1.9. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.9/

Cité par Sources :