Holomorphic factorization of mappings into $\mathrm{SL}_n(\mathbb{C})$
Annals of mathematics, Tome 175 (2012) no. 1, pp. 45-69.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We solve Gromov’s Vaserstein problem. Namely, we show that a null-homotopic holomorphic mapping from a finite dimensional reduced Stein space into $\mathrm{SL}_n(\mathbb{C})$ can be factored into a finite product of unipotent matrices with holomorphic entries.
DOI : 10.4007/annals.2012.175.1.3

Björn Ivarsson 1 ; Frank Kutzschebauch 2

1 Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2 Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern<br/>Switzerland
@article{10_4007_annals_2012_175_1_3,
     author = {Bj\"orn Ivarsson and Frank Kutzschebauch},
     title = {Holomorphic factorization of mappings into $\mathrm{SL}_n(\mathbb{C})$},
     journal = {Annals of mathematics},
     pages = {45--69},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.175.1.3},
     mrnumber = {2874639},
     zbl = {06014072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.3/}
}
TY  - JOUR
AU  - Björn Ivarsson
AU  - Frank Kutzschebauch
TI  - Holomorphic factorization of mappings into $\mathrm{SL}_n(\mathbb{C})$
JO  - Annals of mathematics
PY  - 2012
SP  - 45
EP  - 69
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.3/
DO  - 10.4007/annals.2012.175.1.3
LA  - en
ID  - 10_4007_annals_2012_175_1_3
ER  - 
%0 Journal Article
%A Björn Ivarsson
%A Frank Kutzschebauch
%T Holomorphic factorization of mappings into $\mathrm{SL}_n(\mathbb{C})$
%J Annals of mathematics
%D 2012
%P 45-69
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.3/
%R 10.4007/annals.2012.175.1.3
%G en
%F 10_4007_annals_2012_175_1_3
Björn Ivarsson; Frank Kutzschebauch. Holomorphic factorization of mappings into $\mathrm{SL}_n(\mathbb{C})$. Annals of mathematics, Tome 175 (2012) no. 1, pp. 45-69. doi : 10.4007/annals.2012.175.1.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.3/

Cité par Sources :