Multiplicity one theorems: the Archimedean case
Annals of mathematics, Tome 175 (2012) no. 1, pp. 23-44.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $G$ be one of the classical Lie groups $\mathrm{GL}_{n+1}(\mathbb{R})$, $\mathrm{GL}_{n+1}(\mathbb{C})$, $\mathrm{U}(p,q+1)$, $\mathrm{O}(p,q+1)$, $\mathrm{O}_{n+1}(\mathbb{C})$, $\mathrm{SO}(p,q+1)$, $\mathrm{SO}_{n+1}(\mathbb{C})$, and let $G’$ be respectively the subgroup $\mathrm{GL}_{n}(\mathbb{R})$, $\mathrm{GL}_{n}(\mathbb{C})$, $\mathrm{U}(p,q)$, $\mathrm{O}(p,q)$, $\mathrm{O}_n(\mathbb{C})$, $\mathrm{SO}(p,q)$, $\mathrm{SO}_n(\mathbb{C})$, embedded in $G$ in the standard way. We show that every irreducible Casselman-Wallach representation of $G’$ occurs with multiplicity at most one in every irreducible Casselman-Wallach representation of $G$. Similar results are proved for the Jacobi groups $\mathrm{GL}_{n}(\mathbb{R})\ltimes \mathrm{H}_{2n+1}(\mathbb{R})$, $\mathrm{GL}_{n}(\mathbb{C})\ltimes \mathrm{H}_{2n+1}(\mathbb{C})$, $\mathrm{U}(p,q)\ltimes \mathrm{H}_{2p+2q+1}(\mathbb{R})$, $\mathrm{Sp}_{2n}(\mathbb{R})\ltimes \mathrm{H}_{2n+1}(\mathbb{R})$, $\mathrm{Sp}_{2n}(\mathbb{C})\ltimes \mathrm{H}_{2n+1}(\mathbb{C})$, with their respective subgroups $\mathrm{GL}_{n}(\mathbb{R})$, $\mathrm{GL}_{n}(\mathbb{C})$, $\mathrm{U}(p,q)$, $\mathrm{Sp}_{2n}(\mathbb{R})$, and $\mathrm{Sp}_{2n}(\mathbb{C})$.
DOI : 10.4007/annals.2012.175.1.2

Binyong Sun 1 ; Chen-Bo Zhu 2

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55 Zhongguancun East Road, Beijing 100190, P. R. China
2 Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Republic of Singapore
@article{10_4007_annals_2012_175_1_2,
     author = {Binyong Sun and Chen-Bo Zhu},
     title = {Multiplicity one theorems: the {Archimedean} case},
     journal = {Annals of mathematics},
     pages = {23--44},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2012},
     doi = {10.4007/annals.2012.175.1.2},
     mrnumber = {2874638},
     zbl = {06014071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.2/}
}
TY  - JOUR
AU  - Binyong Sun
AU  - Chen-Bo Zhu
TI  - Multiplicity one theorems: the Archimedean case
JO  - Annals of mathematics
PY  - 2012
SP  - 23
EP  - 44
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.2/
DO  - 10.4007/annals.2012.175.1.2
LA  - en
ID  - 10_4007_annals_2012_175_1_2
ER  - 
%0 Journal Article
%A Binyong Sun
%A Chen-Bo Zhu
%T Multiplicity one theorems: the Archimedean case
%J Annals of mathematics
%D 2012
%P 23-44
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.2/
%R 10.4007/annals.2012.175.1.2
%G en
%F 10_4007_annals_2012_175_1_2
Binyong Sun; Chen-Bo Zhu. Multiplicity one theorems: the Archimedean case. Annals of mathematics, Tome 175 (2012) no. 1, pp. 23-44. doi : 10.4007/annals.2012.175.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.1.2/

Cité par Sources :