From real affine geometry to complex geometry
Annals of mathematics, Tome 174 (2011) no. 3, pp. 1301-1428.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We construct from a real affine manifold with singularities (a tropical manifold) a degeneration of Calabi-Yau manifolds. This solves a fundamental problem in mirror symmetry. Furthermore, a striking feature of our approach is that it yields an explicit and canonical order-by-order description of the degeneration via families of tropical trees.
This gives complete control of the $B$-model side of mirror symmetry in terms of tropical geometry. For example, we expect that our deformation parameter is a canonical coordinate, and expect period calculations to be expressible in terms of tropical curves. We anticipate this will lead to a proof of mirror symmetry via tropical methods.
DOI : 10.4007/annals.2011.174.3.1

Mark Gross 1 ; Bernd Siebert 2

1 Department of Mathematics<br/> University of California, San Diego<br/> La Jolla, CA 92093-0112
2 Department Mathematik<br/>Universität Hamburg<br/> 20146 Hamburg<br/> Germany
@article{10_4007_annals_2011_174_3_1,
     author = {Mark Gross and Bernd Siebert},
     title = {From real affine geometry to complex geometry},
     journal = {Annals of mathematics},
     pages = {1301--1428},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {2011},
     doi = {10.4007/annals.2011.174.3.1},
     mrnumber = {2846484},
     zbl = {06005477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.3.1/}
}
TY  - JOUR
AU  - Mark Gross
AU  - Bernd Siebert
TI  - From real affine geometry to complex geometry
JO  - Annals of mathematics
PY  - 2011
SP  - 1301
EP  - 1428
VL  - 174
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.3.1/
DO  - 10.4007/annals.2011.174.3.1
LA  - en
ID  - 10_4007_annals_2011_174_3_1
ER  - 
%0 Journal Article
%A Mark Gross
%A Bernd Siebert
%T From real affine geometry to complex geometry
%J Annals of mathematics
%D 2011
%P 1301-1428
%V 174
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.3.1/
%R 10.4007/annals.2011.174.3.1
%G en
%F 10_4007_annals_2011_174_3_1
Mark Gross; Bernd Siebert. From real affine geometry to complex geometry. Annals of mathematics, Tome 174 (2011) no. 3, pp. 1301-1428. doi : 10.4007/annals.2011.174.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.3.1/

Cité par Sources :