A height gap theorem for finite subsets of $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and nonamenable subgroups
Annals of mathematics, Tome 174 (2011) no. 2, pp. 1057-1110.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We introduce a conjugation invariant normalized height $\widehat{h}(F)$ on finite subsets of matrices $F$ in $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and describe its properties. In particular, we prove an analogue of the Lehmer problem for this height by showing that $\widehat{h}(F)>\varepsilon $ whenever $F$ generates a nonvirtually solvable subgroup of $\mathrm{GL}_{d}(\overline{\Bbb{Q}}),$ where $\varepsilon =\varepsilon (d)>0$ is an absolute constant. This can be seen as a global adelic analog of the classical Margulis Lemma from hyperbolic geometry. As an application we prove a uniform version of the classical Burnside-Schur theorem on torsion linear groups. In a companion paper we will apply these results to prove a strong uniform version of the Tits alternative.
DOI : 10.4007/annals.2011.174.2.7

Emmanuel Breuillard 1

1 Laboratoire de Mathématiques<br/>Université Paris Sud<br/> 91405 Orsay cedex<br/> France
@article{10_4007_annals_2011_174_2_7,
     author = {Emmanuel Breuillard},
     title = {A height gap theorem for finite subsets of $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and nonamenable subgroups},
     journal = {Annals of mathematics},
     pages = {1057--1110},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.174.2.7},
     mrnumber = {2831113},
     zbl = {05960722},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.7/}
}
TY  - JOUR
AU  - Emmanuel Breuillard
TI  - A height gap theorem for finite subsets of $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and nonamenable subgroups
JO  - Annals of mathematics
PY  - 2011
SP  - 1057
EP  - 1110
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.7/
DO  - 10.4007/annals.2011.174.2.7
LA  - en
ID  - 10_4007_annals_2011_174_2_7
ER  - 
%0 Journal Article
%A Emmanuel Breuillard
%T A height gap theorem for finite subsets of $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and nonamenable subgroups
%J Annals of mathematics
%D 2011
%P 1057-1110
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.7/
%R 10.4007/annals.2011.174.2.7
%G en
%F 10_4007_annals_2011_174_2_7
Emmanuel Breuillard. A height gap theorem for finite subsets of $\mathrm{GL}_{d}(\overline{\Bbb{Q}})$ and nonamenable subgroups. Annals of mathematics, Tome 174 (2011) no. 2, pp. 1057-1110. doi : 10.4007/annals.2011.174.2.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.7/

Cité par Sources :