Arithmetic groups have rational representation growth
Annals of mathematics, Tome 174 (2011) no. 2, pp. 1009-1056.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\Gamma$ be an arithmetic lattice in a semisimple algebraic group over a number field. We show that if $\Gamma$ has the congruence subgroup property, then the number of $n$-dimensional irreducible representations of $\Gamma$ grows like $n^\alpha$, where $\alpha$ is a rational number.
DOI : 10.4007/annals.2011.174.2.6

Nir Avni 1

1 The Hebrew University of Jerusalem<br/> Jerusalem 91904<br/> Israel
@article{10_4007_annals_2011_174_2_6,
     author = {Nir Avni},
     title = {Arithmetic groups have rational representation growth},
     journal = {Annals of mathematics},
     pages = {1009--1056},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.174.2.6},
     mrnumber = {2831112},
     zbl = {05960721},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.6/}
}
TY  - JOUR
AU  - Nir Avni
TI  - Arithmetic groups have rational representation growth
JO  - Annals of mathematics
PY  - 2011
SP  - 1009
EP  - 1056
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.6/
DO  - 10.4007/annals.2011.174.2.6
LA  - en
ID  - 10_4007_annals_2011_174_2_6
ER  - 
%0 Journal Article
%A Nir Avni
%T Arithmetic groups have rational representation growth
%J Annals of mathematics
%D 2011
%P 1009-1056
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.6/
%R 10.4007/annals.2011.174.2.6
%G en
%F 10_4007_annals_2011_174_2_6
Nir Avni. Arithmetic groups have rational representation growth. Annals of mathematics, Tome 174 (2011) no. 2, pp. 1009-1056. doi : 10.4007/annals.2011.174.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.6/

Cité par Sources :