Loop groups and twisted $K$-theory III
Annals of mathematics, Tome 174 (2011) no. 2, pp. 947-1007.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper, we identify the Ad-equivariant twisted $K$-theory of a compact Lie group $G$ with the “Verlinde group” of isomorphism classes of admissible representations of its loop groups. Our identification preserves natural module structures over the representation ring $R(G)$ and a natural duality pairing. Two earlier papers in the series covered foundations of twisted equivariant $K$-theory, introduced distinguished families of Dirac operators and discussed the special case of connected groups with free $\pi_1$. Here, we recall the earlier material as needed to make the paper self-contained. Going further, we discuss the relation to semi-infinite cohomology, the fusion product of conformal field theory, the rôle of energy and a topological Peter-Weyl theorem.
DOI : 10.4007/annals.2011.174.2.5

Daniel S. Freed 1 ; Michael J. Hopkins 2 ; Constantin Teleman 3

1 Department of Mathematics<br/> The University of Texas at Austin<br/> Austin, TX 78712
2 Department of Mathematics<br/>Harvard University<br/>Cambridge, MA 02138
3 Department of Mathematics<br/> University of California, Berkeley<br/> Berkeley, CA 94720-3840
@article{10_4007_annals_2011_174_2_5,
     author = {Daniel S. Freed and Michael J. Hopkins and Constantin Teleman},
     title = {Loop groups and twisted $K$-theory {III}},
     journal = {Annals of mathematics},
     pages = {947--1007},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.174.2.5},
     mrnumber = {2831111},
     zbl = {05960720},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.5/}
}
TY  - JOUR
AU  - Daniel S. Freed
AU  - Michael J. Hopkins
AU  - Constantin Teleman
TI  - Loop groups and twisted $K$-theory III
JO  - Annals of mathematics
PY  - 2011
SP  - 947
EP  - 1007
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.5/
DO  - 10.4007/annals.2011.174.2.5
LA  - en
ID  - 10_4007_annals_2011_174_2_5
ER  - 
%0 Journal Article
%A Daniel S. Freed
%A Michael J. Hopkins
%A Constantin Teleman
%T Loop groups and twisted $K$-theory III
%J Annals of mathematics
%D 2011
%P 947-1007
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.5/
%R 10.4007/annals.2011.174.2.5
%G en
%F 10_4007_annals_2011_174_2_5
Daniel S. Freed; Michael J. Hopkins; Constantin Teleman. Loop groups and twisted $K$-theory III. Annals of mathematics, Tome 174 (2011) no. 2, pp. 947-1007. doi : 10.4007/annals.2011.174.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.2.5/

Cité par Sources :