Generalized complex geometry
Annals of mathematics, Tome 174 (2011) no. 1, pp. 75-123 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

Generalized complex geometry encompasses complex and symplectic geometry as its extremal special cases. We explore the basic properties of this geometry, including its enhanced symmetry group, elliptic deformation theory, relation to Poisson geometry, and local structure theory. We also define and study generalized complex branes, which interpolate between flat bundles on Lagrangian submanifolds and holomorphic bundles on complex submanifolds.

DOI : 10.4007/annals.2011.174.1.3

Marco Gualtieri 1

1 Department of Mathematics<br/>University of Toronto<br/>Toronto, Ontario<br/> Canada M5S 2E4
@article{10_4007_annals_2011_174_1_3,
     author = {Marco Gualtieri},
     title = {Generalized complex geometry},
     journal = {Annals of mathematics},
     pages = {75--123},
     year = {2011},
     volume = {174},
     number = {1},
     doi = {10.4007/annals.2011.174.1.3},
     mrnumber = {2811595},
     zbl = {05960697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.3/}
}
TY  - JOUR
AU  - Marco Gualtieri
TI  - Generalized complex geometry
JO  - Annals of mathematics
PY  - 2011
SP  - 75
EP  - 123
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.3/
DO  - 10.4007/annals.2011.174.1.3
LA  - en
ID  - 10_4007_annals_2011_174_1_3
ER  - 
%0 Journal Article
%A Marco Gualtieri
%T Generalized complex geometry
%J Annals of mathematics
%D 2011
%P 75-123
%V 174
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.3/
%R 10.4007/annals.2011.174.1.3
%G en
%F 10_4007_annals_2011_174_1_3
Marco Gualtieri. Generalized complex geometry. Annals of mathematics, Tome 174 (2011) no. 1, pp. 75-123. doi: 10.4007/annals.2011.174.1.3

Cité par Sources :