On Roth’s theorem on progressions
Annals of mathematics, Tome 174 (2011) no. 1, pp. 619-636.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that if $A \subset \{1,\dots,N\}$ contains no nontrivial three-term arithmetic progressions then $|A|=O(N/\log^{1-o(1)}N)$.
DOI : 10.4007/annals.2011.174.1.20

Tom Sanders 1

1 DPMMS<br/> Centre for Mathematical Sciences<br/> University of Cambridge<br/>Wilberforce Road<br/> Cambridge CB3 0WA <br/>England
@article{10_4007_annals_2011_174_1_20,
     author = {Tom Sanders},
     title = {On {Roth{\textquoteright}s} theorem on progressions},
     journal = {Annals of mathematics},
     pages = {619--636},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.174.1.20},
     mrnumber = {2811612},
     zbl = {05960714},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.20/}
}
TY  - JOUR
AU  - Tom Sanders
TI  - On Roth’s theorem on progressions
JO  - Annals of mathematics
PY  - 2011
SP  - 619
EP  - 636
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.20/
DO  - 10.4007/annals.2011.174.1.20
LA  - en
ID  - 10_4007_annals_2011_174_1_20
ER  - 
%0 Journal Article
%A Tom Sanders
%T On Roth’s theorem on progressions
%J Annals of mathematics
%D 2011
%P 619-636
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.20/
%R 10.4007/annals.2011.174.1.20
%G en
%F 10_4007_annals_2011_174_1_20
Tom Sanders. On Roth’s theorem on progressions. Annals of mathematics, Tome 174 (2011) no. 1, pp. 619-636. doi : 10.4007/annals.2011.174.1.20. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.20/

Cité par Sources :