Hilbert modular forms and the Gross-Stark conjecture
Annals of mathematics, Tome 174 (2011) no. 1, pp. 439-484.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $F$ be a totally real field and $\chi$ an abelian totally odd character of $F$. In 1988, Gross stated a $p$-adic analogue of Stark’s conjecture that relates the value of the derivative of the $p$-adic $L$-function associated to $\chi$ and the $p$-adic logarithm of a $p$-unit in the extension of $F$ cut out by $\chi$. In this paper we prove Gross’s conjecture when $F$ is a real quadratic field and $\chi$ is a narrow ring class character. The main result also applies to general totally real fields for which Leopoldt’s conjecture holds, assuming that either there are at least two primes above $p$ in $F$, or that a certain condition relating the $\mathscr{L}$-invariants of $\chi$ and $\chi^{-1}$ holds. This condition on $\mathscr{L}$-invariants is always satisfied when $\chi$ is quadratic.
DOI : 10.4007/annals.2011.174.1.12

Samit Dasgupta 1 ; Henri Darmon 2 ; Robert Pollack 3

1 Mathematics Department<br/>University of California Santa Cruz<br/> Santa Cruz, CA 95064
2 The Department of Mathematics and Statistics<br/>McGill University<br/>805 Sherbrook Street West<br/>Montreal, Quebec<br/>Canada H3A 2K6
3 Department of Mathematics and Statistics<br/>Boston University<br/> 111 Cummington Street<br/> Boston, MA 02215
@article{10_4007_annals_2011_174_1_12,
     author = {Samit Dasgupta and Henri Darmon and Robert Pollack},
     title = {Hilbert modular forms and the  {Gross-Stark} conjecture},
     journal = {Annals of mathematics},
     pages = {439--484},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.174.1.12},
     mrnumber = {2811604},
     zbl = {05960706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.12/}
}
TY  - JOUR
AU  - Samit Dasgupta
AU  - Henri Darmon
AU  - Robert Pollack
TI  - Hilbert modular forms and the  Gross-Stark conjecture
JO  - Annals of mathematics
PY  - 2011
SP  - 439
EP  - 484
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.12/
DO  - 10.4007/annals.2011.174.1.12
LA  - en
ID  - 10_4007_annals_2011_174_1_12
ER  - 
%0 Journal Article
%A Samit Dasgupta
%A Henri Darmon
%A Robert Pollack
%T Hilbert modular forms and the  Gross-Stark conjecture
%J Annals of mathematics
%D 2011
%P 439-484
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.12/
%R 10.4007/annals.2011.174.1.12
%G en
%F 10_4007_annals_2011_174_1_12
Samit Dasgupta; Henri Darmon; Robert Pollack. Hilbert modular forms and the  Gross-Stark conjecture. Annals of mathematics, Tome 174 (2011) no. 1, pp. 439-484. doi : 10.4007/annals.2011.174.1.12. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.12/

Cité par Sources :