On motivic cohomology with $\mathbf{Z}/l$-coefficients
Annals of mathematics, Tome 174 (2011) no. 1, pp. 401-438.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we prove the conjecture of Bloch and Kato which relates Milnor’s $K$-theory of a field with its Galois cohomology as well as the related comparisons results for motivic cohomology with finite coefficients in the Nisnevich and étale topologies.
DOI : 10.4007/annals.2011.174.1.11

Vladimir Voevodsky 1

1 School of Mathematics<br/> Institute for Advanced Study<br/>Einstein Drive<br/>Princeton, NJ 08540
@article{10_4007_annals_2011_174_1_11,
     author = {Vladimir Voevodsky},
     title = {On motivic cohomology with $\mathbf{Z}/l$-coefficients},
     journal = {Annals of mathematics},
     pages = {401--438},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.174.1.11},
     mrnumber = {2811603},
     zbl = {05960705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.11/}
}
TY  - JOUR
AU  - Vladimir Voevodsky
TI  - On motivic cohomology with $\mathbf{Z}/l$-coefficients
JO  - Annals of mathematics
PY  - 2011
SP  - 401
EP  - 438
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.11/
DO  - 10.4007/annals.2011.174.1.11
LA  - en
ID  - 10_4007_annals_2011_174_1_11
ER  - 
%0 Journal Article
%A Vladimir Voevodsky
%T On motivic cohomology with $\mathbf{Z}/l$-coefficients
%J Annals of mathematics
%D 2011
%P 401-438
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.11/
%R 10.4007/annals.2011.174.1.11
%G en
%F 10_4007_annals_2011_174_1_11
Vladimir Voevodsky. On motivic cohomology with $\mathbf{Z}/l$-coefficients. Annals of mathematics, Tome 174 (2011) no. 1, pp. 401-438. doi : 10.4007/annals.2011.174.1.11. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.11/

Cité par Sources :