Nonuniform measure rigidity
Annals of mathematics, Tome 174 (2011) no. 1, pp. 361-400.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We consider an ergodic invariant measure $\mu$ for a smooth action $\alpha$ of $\mathbb{Z}^k$, $k\ge 2$, on a $(k+1)$-dimensional manifold or for a locally free smooth action of $\mathbb{R}^k$, $k\ge 2$, on a $(2k+1)$-dimensional manifold. We prove that if $\mu$ is hyperbolic with the Lyapunov hyperplanes in general position and if one element in $\mathbb{Z}^k$ has positive entropy, then $\mu$ is absolutely continuous. The main ingredient is absolute continuity of conditional measures on Lyapunov foliations which holds for a more general class of smooth actions of higher rank abelian groups.
DOI : 10.4007/annals.2011.174.1.10

Boris Kalinin 1 ; Anatole Katok 2 ; Federico Rodriguez Hertz 3

1 Department of Mathematics and Statistics<br/>University of South Alabama<br/> Mobile, AL 36688
2 Mathematics Department<br/>The Pennsylvania State University<br/>University Park<br/> State College, PA 16802
3 IMERL<br/> Facultad de Ingeniería<br/>Universidad de la República<br/> 11300 Montevideo<br/> Uruguay
@article{10_4007_annals_2011_174_1_10,
     author = {Boris Kalinin and Anatole Katok and Federico Rodriguez Hertz},
     title = {Nonuniform measure rigidity},
     journal = {Annals of mathematics},
     pages = {361--400},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.174.1.10},
     mrnumber = {2811602},
     zbl = {05960704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.10/}
}
TY  - JOUR
AU  - Boris Kalinin
AU  - Anatole Katok
AU  - Federico Rodriguez Hertz
TI  - Nonuniform measure rigidity
JO  - Annals of mathematics
PY  - 2011
SP  - 361
EP  - 400
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.10/
DO  - 10.4007/annals.2011.174.1.10
LA  - en
ID  - 10_4007_annals_2011_174_1_10
ER  - 
%0 Journal Article
%A Boris Kalinin
%A Anatole Katok
%A Federico Rodriguez Hertz
%T Nonuniform measure rigidity
%J Annals of mathematics
%D 2011
%P 361-400
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.10/
%R 10.4007/annals.2011.174.1.10
%G en
%F 10_4007_annals_2011_174_1_10
Boris Kalinin; Anatole Katok; Federico Rodriguez Hertz. Nonuniform measure rigidity. Annals of mathematics, Tome 174 (2011) no. 1, pp. 361-400. doi : 10.4007/annals.2011.174.1.10. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.174.1.10/

Cité par Sources :