Heisenberg uniqueness pairs and the Klein-Gordon equation
Annals of mathematics, Tome 173 (2011) no. 3, pp. 1507-1527.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A Heisenberg uniqueness pair (HUP) is a pair $(\Gamma,\Lambda)$, where $\Gamma$ is a curve in the plane and $\Lambda$ is a set in the plane, with the following property: any finite Borel measure $\mu$ in the plane supported on $\Gamma$, which is absolutely continuous with respect to arc length, and whose Fourier transform $\widehat\mu$ vanishes on $\Lambda$, must automatically be the zero measure. We prove that when $\Gamma$ is the hyperbola $x_1x_2=1$ %, and $\Lambda$ is the lattice-cross \[\Lambda=(\alpha\mathbb{Z}\times\{0\})\cup(\{0\}\times\beta\mathbb{Z}),\] where $\alpha,\beta$ are positive reals, then $(\Gamma,\Lambda)$ is an HUP if and only if $\alpha\beta\le1$; in this situation, the Fourier transform $\widehat\mu$ of the measure solves the one-dimensional Klein-Gordon equation. Phrased differently, we show that \[{\mathrm e}^{\pi{\mathrm i} \alpha n t},\,\,{\mathrm e}^{\pi{\mathrm i}\beta n/t},\qquad n\in\mathbb{Z},\] span a weak-star dense subspace in $L^\infty(\mathbb{R})$ if and only if $\alpha\beta\le1$. In order to prove this theorem, some elements of linear fractional theory and ergodic theory are needed, such as the Birkhoff Ergodic Theorem. An idea parallel to the one exploited by Makarov and Poltoratski (in the context of model subspaces) is also needed. As a consequence, we solve a problem on the density of algebras generated by two inner functions raised by Matheson and Stessin.
DOI : 10.4007/annals.2011.173.3.6

Haakan Hedenmalm 1 ; Alfonso Montes-Rodríguez 2

1 The Royal Institute of Technology<br/> Department of Mathematics<br/>S 100 44 Stockholm<br/> Sweden
2 Department of Mathematics<br/> University of Sevilla<br/>41080 Sevilla<br/>Spain
@article{10_4007_annals_2011_173_3_6,
     author = {Haakan Hedenmalm and Alfonso Montes-Rodr{\'\i}guez},
     title = {Heisenberg uniqueness pairs and the {Klein-Gordon} equation},
     journal = {Annals of mathematics},
     pages = {1507--1527},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2011},
     doi = {10.4007/annals.2011.173.3.6},
     mrnumber = {2800719},
     zbl = {1227.42002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.6/}
}
TY  - JOUR
AU  - Haakan Hedenmalm
AU  - Alfonso Montes-Rodríguez
TI  - Heisenberg uniqueness pairs and the Klein-Gordon equation
JO  - Annals of mathematics
PY  - 2011
SP  - 1507
EP  - 1527
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.6/
DO  - 10.4007/annals.2011.173.3.6
LA  - en
ID  - 10_4007_annals_2011_173_3_6
ER  - 
%0 Journal Article
%A Haakan Hedenmalm
%A Alfonso Montes-Rodríguez
%T Heisenberg uniqueness pairs and the Klein-Gordon equation
%J Annals of mathematics
%D 2011
%P 1507-1527
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.6/
%R 10.4007/annals.2011.173.3.6
%G en
%F 10_4007_annals_2011_173_3_6
Haakan Hedenmalm; Alfonso Montes-Rodríguez. Heisenberg uniqueness pairs and the Klein-Gordon equation. Annals of mathematics, Tome 173 (2011) no. 3, pp. 1507-1527. doi : 10.4007/annals.2011.173.3.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.6/

Cité par Sources :