Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces
Annals of mathematics, Tome 173 (2011) no. 3, pp. 1443-1506.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We consider the Schrödinger map initial-value problem $$\cases{ \partial_t\phi=\phi\times\Delta \phi &\text{on } \mathbb{R}^d\times\mathbb{R},\cr
\phi(0)=\phi_0, &{} }$$ where $\phi\colon\mathbb{R}^d\times\mathbb{R}\to\mathbb{S}^2\hookrightarrow \mathbb{R}^3$ is a smooth function. In all dimensions $d\geq 2$, we prove that the Schrödinger map initial-value problem admits a unique global smooth solution $\phi\in C(\mathbb{R}:H^\infty_Q)$, $Q\in\mathbb{S}^2$, provided that the data $\phi_0\in H^\infty_Q$ is smooth and satisfies the smallness condition $\|\phi_0-Q\|_{\dot{H}^{d/2}}\ll 1$. We prove also that the solution operator extends continuously to the space of data in $\dot H^{d/2}\cap \dot H^{d/2-1}_Q$ with small $\dot{H}^{d/2}$ norm.
DOI : 10.4007/annals.2011.173.3.5

I. Bejenaru 1 ; Alexandru D. Ionescu 2 ; Carlos E. Kenig 1 ; Daniel Tataru 3

1 Department of Mathematics<br/>The University of Chicago<br/> Chicago, IL 60637
2 Department of Mathematics<br/>University of Wisconsin<br/> Madison, WI 53706-1388
3 Department of Mathematics<br/>University of California<br/> Berkeley, CA 94720-3840
@article{10_4007_annals_2011_173_3_5,
     author = {I. Bejenaru and Alexandru D.  Ionescu and Carlos E. Kenig and Daniel Tataru},
     title = {Global {Schr\"odinger} maps in dimensions $d\ensuremath{\geq} 2$: {Small} data in the critical {Sobolev} spaces},
     journal = {Annals of mathematics},
     pages = {1443--1506},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2011},
     doi = {10.4007/annals.2011.173.3.5},
     mrnumber = {2800718},
     zbl = {05960687},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.5/}
}
TY  - JOUR
AU  - I. Bejenaru
AU  - Alexandru D.  Ionescu
AU  - Carlos E. Kenig
AU  - Daniel Tataru
TI  - Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces
JO  - Annals of mathematics
PY  - 2011
SP  - 1443
EP  - 1506
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.5/
DO  - 10.4007/annals.2011.173.3.5
LA  - en
ID  - 10_4007_annals_2011_173_3_5
ER  - 
%0 Journal Article
%A I. Bejenaru
%A Alexandru D.  Ionescu
%A Carlos E. Kenig
%A Daniel Tataru
%T Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces
%J Annals of mathematics
%D 2011
%P 1443-1506
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.5/
%R 10.4007/annals.2011.173.3.5
%G en
%F 10_4007_annals_2011_173_3_5
I. Bejenaru; Alexandru D.  Ionescu; Carlos E. Kenig; Daniel Tataru. Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces. Annals of mathematics, Tome 173 (2011) no. 3, pp. 1443-1506. doi : 10.4007/annals.2011.173.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.5/

Cité par Sources :