On the structure of the Selberg class, VII: $1\lt d\lt 2$
Annals of mathematics, Tome 173 (2011) no. 3, pp. 1397-1441.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The Selberg class $\mathcal{S}$ is a rather general class of Dirichlet series with functional equation and Euler product and can be regarded as an axiomatic model for the global $L$-functions arising from number theory and automorphic representations. One of the main problems of the Selberg class theory is to classify the elements of $\mathcal{S}$. Such a classification is based on a real-valued invariant $d$ called degree, and the degree conjecture asserts that $d\in\mathbb{N}$ for every $L$-function in $\mathcal{S}$. The degree conjecture has been proved for $d\lt 5/3$, and in this paper we extend its validity to $d\lt 2$. The proof requires several new ingredients, in particular a rather precise description of the properties of certain nonlinear twists associated with the $L$-functions in $\mathcal{S}$.
DOI : 10.4007/annals.2011.173.3.4

Jerzy Kaczorowski 1 ; Alberto Perelli 2

1 Faculty of Mathematics and Computer Science<br/>Adam Mickiewicz University<br/> 61-614 Poznań <br/>Poland
2 Dipartimento de Matematica<br/>Università di Genova<br/> 16146 Genova<br/>Italy
@article{10_4007_annals_2011_173_3_4,
     author = {Jerzy Kaczorowski and Alberto Perelli},
     title = {On the structure of the {Selberg} class, {VII:} $1\lt d\lt 2$},
     journal = {Annals of mathematics},
     pages = {1397--1441},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2011},
     doi = {10.4007/annals.2011.173.3.4},
     mrnumber = {2800717},
     zbl = {05960686},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.4/}
}
TY  - JOUR
AU  - Jerzy Kaczorowski
AU  - Alberto Perelli
TI  - On the structure of the Selberg class, VII: $1\lt d\lt 2$
JO  - Annals of mathematics
PY  - 2011
SP  - 1397
EP  - 1441
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.4/
DO  - 10.4007/annals.2011.173.3.4
LA  - en
ID  - 10_4007_annals_2011_173_3_4
ER  - 
%0 Journal Article
%A Jerzy Kaczorowski
%A Alberto Perelli
%T On the structure of the Selberg class, VII: $1\lt d\lt 2$
%J Annals of mathematics
%D 2011
%P 1397-1441
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.4/
%R 10.4007/annals.2011.173.3.4
%G en
%F 10_4007_annals_2011_173_3_4
Jerzy Kaczorowski; Alberto Perelli. On the structure of the Selberg class, VII: $1\lt d\lt 2$. Annals of mathematics, Tome 173 (2011) no. 3, pp. 1397-1441. doi : 10.4007/annals.2011.173.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.3.4/

Cité par Sources :