Global regularity for some classes of large solutions to the Navier-Stokes equations
Annals of mathematics, Tome 173 (2011) no. 2, pp. 983-1012.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In previous works by the first two authors, classes of initial data to the three-dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large. The main feature of the initial data considered in one of those studies is that it varies slowly in one direction, though in some sense it is “well-prepared” (its norm is large but does not depend on the slow parameter). The aim of this article is to generalize that setting to an “ill prepared” situation (the norm blows up as the small parameter goes to zero). As in those works, the proof uses the special structure of the nonlinear term of the equation.
DOI : 10.4007/annals.2011.173.2.9

Jean-Yves Chemin 1 ; Isabelle Gallagher 2 ; Marius Paicu 3

1 Université Pierre et Marie Curie<br/>Paris<br/> France
2 Université Paris Diderot<br/> Paris<br/> France
3 Université Paris Sud<br/> Orsay<br/> France
@article{10_4007_annals_2011_173_2_9,
     author = {Jean-Yves Chemin and Isabelle Gallagher and Marius Paicu},
     title = {Global regularity for  some classes of large solutions    to the   {Navier-Stokes} equations},
     journal = {Annals of mathematics},
     pages = {983--1012},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.173.2.9},
     mrnumber = {2776367},
     zbl = {05960676},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.9/}
}
TY  - JOUR
AU  - Jean-Yves Chemin
AU  - Isabelle Gallagher
AU  - Marius Paicu
TI  - Global regularity for  some classes of large solutions    to the   Navier-Stokes equations
JO  - Annals of mathematics
PY  - 2011
SP  - 983
EP  - 1012
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.9/
DO  - 10.4007/annals.2011.173.2.9
LA  - en
ID  - 10_4007_annals_2011_173_2_9
ER  - 
%0 Journal Article
%A Jean-Yves Chemin
%A Isabelle Gallagher
%A Marius Paicu
%T Global regularity for  some classes of large solutions    to the   Navier-Stokes equations
%J Annals of mathematics
%D 2011
%P 983-1012
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.9/
%R 10.4007/annals.2011.173.2.9
%G en
%F 10_4007_annals_2011_173_2_9
Jean-Yves Chemin; Isabelle Gallagher; Marius Paicu. Global regularity for  some classes of large solutions    to the   Navier-Stokes equations. Annals of mathematics, Tome 173 (2011) no. 2, pp. 983-1012. doi : 10.4007/annals.2011.173.2.9. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.9/

Cité par Sources :