Hermitian integral geometry
Annals of mathematics, Tome 173 (2011) no. 2, pp. 907-945.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give in explicit form the principal kinematic formula for the action of the affine unitary group on $\mathbb{C}^n$, together with a straightforward algebraic method for computing the full array of unitary kinematic formulas, expressed in terms of certain convex valuations introduced, essentially, by H. Tasaki. We introduce also several other canonical bases for the algebra of unitary-invariant valuations, explore their interrelations, and characterize in these terms the cones of positive and monotone elements.
DOI : 10.4007/annals.2011.173.2.7

Andreas Bernig 1 ; Joseph H. G. Fu 2

1 Goethe-Universität Frankfurt<br/>Frankfurt<br/> Germany
2 University of Georgia<br/>Athens, GA
@article{10_4007_annals_2011_173_2_7,
     author = {Andreas Bernig and Joseph H. G. Fu},
     title = {Hermitian integral geometry},
     journal = {Annals of mathematics},
     pages = {907--945},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.173.2.7},
     mrnumber = {2776365},
     zbl = {05960674},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.7/}
}
TY  - JOUR
AU  - Andreas Bernig
AU  - Joseph H. G. Fu
TI  - Hermitian integral geometry
JO  - Annals of mathematics
PY  - 2011
SP  - 907
EP  - 945
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.7/
DO  - 10.4007/annals.2011.173.2.7
LA  - en
ID  - 10_4007_annals_2011_173_2_7
ER  - 
%0 Journal Article
%A Andreas Bernig
%A Joseph H. G. Fu
%T Hermitian integral geometry
%J Annals of mathematics
%D 2011
%P 907-945
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.7/
%R 10.4007/annals.2011.173.2.7
%G en
%F 10_4007_annals_2011_173_2_7
Andreas Bernig; Joseph H. G. Fu. Hermitian integral geometry. Annals of mathematics, Tome 173 (2011) no. 2, pp. 907-945. doi : 10.4007/annals.2011.173.2.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.7/

Cité par Sources :