Distribution of periodic torus orbits and Duke’s theorem for cubic fields
Annals of mathematics, Tome 173 (2011) no. 2, pp. 815-885.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study periodic torus orbits on spaces of lattices. Using the action of the group of adelic points of the underlying tori, we define a natural equivalence relation on these orbits, and show that the equivalence classes become uniformly distributed. This is a cubic analogue of Duke’s theorem about the distribution of closed geodesics on the modular surface: suitably interpreted, the ideal classes of a cubic totally real field are equidistributed in the modular $5$-fold $\mathrm{SL}_3(\mathbb{Z}) \backslash \mathrm{SL}_3(\mathbb{R}) / \mathrm{SO}_3$. In particular, this proves (a stronger form of) the folklore conjecture that the collection of maximal compact flats in $\mathrm{SL}_3(\mathbb{Z}) \backslash \mathrm{SL}_3(\mathbb{R}) / \mathrm{SO}_3$ of volume $\leq V$ becomes equidistributed as $V \rightarrow \infty$.
The proof combines subconvexity estimates, measure classification, and local harmonic analysis.
DOI : 10.4007/annals.2011.173.2.5

Manfred Einsiedler 1 ; Elon Lindenstrauss 2 ; Philippe Michel 3 ; Akshay Venkatesh 4

1 ETH<br/>Zürich<br/>Switzerland
2 Princeton University<br/>Princeton, NJ <br/><br/>and<br/><br/>The Hebrew University of Jerusalem<br/>Jerusalem<br/> Israel
3 EPF Lausanne<br/>Lausanne<br/> Switzerland
4 Stanford University<br/>Stanford, CA
@article{10_4007_annals_2011_173_2_5,
     author = {Manfred Einsiedler and Elon Lindenstrauss and Philippe Michel and Akshay Venkatesh},
     title = {Distribution of periodic torus orbits and {Duke{\textquoteright}s} theorem for cubic fields},
     journal = {Annals of mathematics},
     pages = {815--885},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.173.2.5},
     mrnumber = {2776363},
     zbl = {05960672},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.5/}
}
TY  - JOUR
AU  - Manfred Einsiedler
AU  - Elon Lindenstrauss
AU  - Philippe Michel
AU  - Akshay Venkatesh
TI  - Distribution of periodic torus orbits and Duke’s theorem for cubic fields
JO  - Annals of mathematics
PY  - 2011
SP  - 815
EP  - 885
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.5/
DO  - 10.4007/annals.2011.173.2.5
LA  - en
ID  - 10_4007_annals_2011_173_2_5
ER  - 
%0 Journal Article
%A Manfred Einsiedler
%A Elon Lindenstrauss
%A Philippe Michel
%A Akshay Venkatesh
%T Distribution of periodic torus orbits and Duke’s theorem for cubic fields
%J Annals of mathematics
%D 2011
%P 815-885
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.5/
%R 10.4007/annals.2011.173.2.5
%G en
%F 10_4007_annals_2011_173_2_5
Manfred Einsiedler; Elon Lindenstrauss; Philippe Michel; Akshay Venkatesh. Distribution of periodic torus orbits and Duke’s theorem for cubic fields. Annals of mathematics, Tome 173 (2011) no. 2, pp. 815-885. doi : 10.4007/annals.2011.173.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.5/

Cité par Sources :