Stable homology of automorphism groups of free groups
Annals of mathematics, Tome 173 (2011) no. 2, pp. 705-768.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Homology of the group $\operatorname{Aut}(F_n)$ of automorphisms of a free group on $n$ generators is known to be independent of $n$ in a certain stable range. Using tools from homotopy theory, we prove that in this range it agrees with homology of symmetric groups. In particular we confirm the conjecture that stable rational homology of $\operatorname{Aut}(F_n)$ vanishes.
DOI : 10.4007/annals.2011.173.2.3

Søren Galatius  1

1 Stanford University<br/>Stanford, CA
@article{10_4007_annals_2011_173_2_3,
     author = {S{\o}ren Galatius },
     title = {Stable homology of automorphism groups of free groups},
     journal = {Annals of mathematics},
     pages = {705--768},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.173.2.3},
     mrnumber = {2784914},
     zbl = {05960670},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.3/}
}
TY  - JOUR
AU  - Søren Galatius 
TI  - Stable homology of automorphism groups of free groups
JO  - Annals of mathematics
PY  - 2011
SP  - 705
EP  - 768
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.3/
DO  - 10.4007/annals.2011.173.2.3
LA  - en
ID  - 10_4007_annals_2011_173_2_3
ER  - 
%0 Journal Article
%A Søren Galatius 
%T Stable homology of automorphism groups of free groups
%J Annals of mathematics
%D 2011
%P 705-768
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.3/
%R 10.4007/annals.2011.173.2.3
%G en
%F 10_4007_annals_2011_173_2_3
Søren Galatius . Stable homology of automorphism groups of free groups. Annals of mathematics, Tome 173 (2011) no. 2, pp. 705-768. doi : 10.4007/annals.2011.173.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.3/

Cité par Sources :