On the distributional Jacobian of maps from $\mathbb{S}^N$ into $\mathbb{S}^N$ in fractional Sobolev and Hölder spaces
Annals of mathematics, Tome 173 (2011) no. 2, pp. 1141-1183.

Voir la notice de l'article provenant de la source Annals of Mathematics website

H. Brezis and L. Nirenberg proved that if $(g_k) \subset C^0(\mathbb{S}^N, \mathbb{S}^N)$ and $g \in C^0(\mathbb{S}^N, \mathbb{S}^N)$ ($N \ge 1$) are such that $g_k \rightarrow g$ in ${\rm BMO}(\mathbb{S}^N)$, then $\mathrm{deg} \, g_k \rightarrow \mathrm{deg} \, g$. On the other hand, if $g \in C^1(\mathbb{S}^N, \mathbb{S}^N)$, then Kronecker’s formula asserts that $ \mathrm{deg} \, g = \frac{1}{|\mathbb{S}^N|} \int_{\mathbb{S}^N} \det (\nabla g) \, d \sigma$. Consequently, $\int_{\mathbb{S}^N} \det (\nabla g_k) \, d \sigma$ converges to $\int_{\mathbb{S}^N} \det (\nabla g) \, d \sigma$ provided $g_k \rightarrow g$ in ${\rm BMO}(\mathbb{S}^N)$. In the same spirit, we consider the quantity $ {\bf J}(g, \psi) := \int_{\mathbb{S}^N} \psi \det (\nabla g) \, d \sigma$, for all $\psi \in C^1(\mathbb{S}^N, \mathbb{R}) $ and study the convergence of ${\bf J}(g_k, \psi)$. In particular, we prove that ${\bf J}(g_k, \psi)$ converges to ${\bf J}(g, \psi)$ for any $\psi \in C^1(\mathbb{S}^N, \mathbb{R})$ if $g_k$ converges to $g$ in $C^{0, \alpha}(\mathbb{S}^N)$ for some $\alpha > \frac{N-1}{N}$. Surprisingly, this result is “optimal” when $N > 1$. In the case $N=1$ we prove that if $g_k \rightarrow g$ almost everywhere and $\limsup_{k \rightarrow \infty} |g_k – g|_{\rm BMO}$ is sufficiently small, then ${\bf J}(g_k, \psi) \rightarrow {\bf J}(g, \psi)$ for any $\psi \in C^1(\mathbb{S}^1, \mathbb{R})$. We also establish bounds for ${\bf J}(g, \psi)$ which are motivated by the works of J. Bourgain, H. Brezis, and H.-M. Nguyen and H.-M. Nguyen. We pay special attention to the case $N=1$.
DOI : 10.4007/annals.2011.173.2.15

Haïm Brezis  1 ; Hoai-Minh Nguyen 2

1 Rutgers University<br/>Piscataway, NJ<br/><br/>and<br/><br/>Israel Institute of Technology<br/>Haifa, Israel
2 Institute for Advanced Study<br/>Princeton, NJ
@article{10_4007_annals_2011_173_2_15,
     author = {Ha{\"\i}m Brezis  and Hoai-Minh Nguyen},
     title = {On the distributional {Jacobian}  of maps from $\mathbb{S}^N$ into $\mathbb{S}^N$ in fractional {Sobolev} and {H\"older} spaces},
     journal = {Annals of mathematics},
     pages = {1141--1183},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2011},
     doi = {10.4007/annals.2011.173.2.15},
     mrnumber = {2776373},
     zbl = {05960682},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.15/}
}
TY  - JOUR
AU  - Haïm Brezis 
AU  - Hoai-Minh Nguyen
TI  - On the distributional Jacobian  of maps from $\mathbb{S}^N$ into $\mathbb{S}^N$ in fractional Sobolev and Hölder spaces
JO  - Annals of mathematics
PY  - 2011
SP  - 1141
EP  - 1183
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.15/
DO  - 10.4007/annals.2011.173.2.15
LA  - en
ID  - 10_4007_annals_2011_173_2_15
ER  - 
%0 Journal Article
%A Haïm Brezis 
%A Hoai-Minh Nguyen
%T On the distributional Jacobian  of maps from $\mathbb{S}^N$ into $\mathbb{S}^N$ in fractional Sobolev and Hölder spaces
%J Annals of mathematics
%D 2011
%P 1141-1183
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.15/
%R 10.4007/annals.2011.173.2.15
%G en
%F 10_4007_annals_2011_173_2_15
Haïm Brezis ; Hoai-Minh Nguyen. On the distributional Jacobian  of maps from $\mathbb{S}^N$ into $\mathbb{S}^N$ in fractional Sobolev and Hölder spaces. Annals of mathematics, Tome 173 (2011) no. 2, pp. 1141-1183. doi : 10.4007/annals.2011.173.2.15. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.2.15/

Cité par Sources :