Dynamical compactifications of $\mathbf{C}^2$
Annals of mathematics, Tome 173 (2011) no. 1, pp. 211-249.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We find good dynamical compactifications for arbitrary polynomial mappings of $\mathbf{C}^2$ and use them to show that the degree growth sequence satisfies a linear integral recursion formula. For maps of low topological degree we prove that the Green function is well behaved. For maps of maximum topological degree, we give normal forms.
DOI : 10.4007/annals.2011.173.1.6

Charles Favre 1 ; Mattias Jonsson 2

1 CNRS-Université Paris 7<br/>Institut de Mathématiques<br/> F-75251 Paris<br/>France
2 Department of Mathematics<br/>University of Michigan<br/>Ann Arbor, MI 48109-1043
@article{10_4007_annals_2011_173_1_6,
     author = {Charles Favre and Mattias Jonsson},
     title = {Dynamical compactifications of $\mathbf{C}^2$},
     journal = {Annals of mathematics},
     pages = {211--249},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.173.1.6},
     mrnumber = {2753603},
     zbl = {05960659},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.6/}
}
TY  - JOUR
AU  - Charles Favre
AU  - Mattias Jonsson
TI  - Dynamical compactifications of $\mathbf{C}^2$
JO  - Annals of mathematics
PY  - 2011
SP  - 211
EP  - 249
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.6/
DO  - 10.4007/annals.2011.173.1.6
LA  - en
ID  - 10_4007_annals_2011_173_1_6
ER  - 
%0 Journal Article
%A Charles Favre
%A Mattias Jonsson
%T Dynamical compactifications of $\mathbf{C}^2$
%J Annals of mathematics
%D 2011
%P 211-249
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.6/
%R 10.4007/annals.2011.173.1.6
%G en
%F 10_4007_annals_2011_173_1_6
Charles Favre; Mattias Jonsson. Dynamical compactifications of $\mathbf{C}^2$. Annals of mathematics, Tome 173 (2011) no. 1, pp. 211-249. doi : 10.4007/annals.2011.173.1.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.6/

Cité par Sources :