Volumes of balls in large Riemannian manifolds
Annals of mathematics, Tome 173 (2011) no. 1, pp. 51-76.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove two lower bounds for the volumes of balls in a Riemannian manifold. If $(M^n, g)$ is a complete Riemannian manifold with filling radius at least $R$, then it contains a ball of radius $R$ and volume at least $\delta(n) R^n$. If $(M^n, \mathrm{hyp})$ is a closed hyperbolic manifold and if $g$ is another metric on $M$ with volume no greater than $\delta(n) \mathrm{Vol}(M, \mathrm{hyp})$, then the universal cover of $(M,g)$ contains a unit ball with volume greater than the volume of a unit ball in hyperbolic $n$-space.
DOI : 10.4007/annals.2011.173.1.2

Larry Guth 1

1 Department of Mathematics<br/>University of Toronto<br/>Toronto Ontario<br/> Canada M5S 2E4
@article{10_4007_annals_2011_173_1_2,
     author = {Larry Guth},
     title = {Volumes of balls in large {Riemannian} manifolds},
     journal = {Annals of mathematics},
     pages = {51--76},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.173.1.2},
     mrnumber = {2753599},
     zbl = {05960655},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.2/}
}
TY  - JOUR
AU  - Larry Guth
TI  - Volumes of balls in large Riemannian manifolds
JO  - Annals of mathematics
PY  - 2011
SP  - 51
EP  - 76
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.2/
DO  - 10.4007/annals.2011.173.1.2
LA  - en
ID  - 10_4007_annals_2011_173_1_2
ER  - 
%0 Journal Article
%A Larry Guth
%T Volumes of balls in large Riemannian manifolds
%J Annals of mathematics
%D 2011
%P 51-76
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.2/
%R 10.4007/annals.2011.173.1.2
%G en
%F 10_4007_annals_2011_173_1_2
Larry Guth. Volumes of balls in large Riemannian manifolds. Annals of mathematics, Tome 173 (2011) no. 1, pp. 51-76. doi : 10.4007/annals.2011.173.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.2/

Cité par Sources :