A solution to a problem of Cassels and Diophantine properties of cubic numbers
Annals of mathematics, Tome 173 (2011) no. 1, pp. 543-557.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that almost any pair of real numbers $\alpha,\beta$, satisfies the following inhomogeneous uniform version of Littlewood’s conjecture: $$\begin{align}\label{C1abst}\tag{C1} \forall \gamma,\delta\in\mathbb{R},\quad \liminf_{|n|\to\infty} \left|n\right|\langle n\alpha-\gamma \rangle\langle n\beta-\delta\rangle=0, \end{align}$$ where $\langle\cdot\rangle$ denotes the distance from the nearest integer. The existence of even a single pair that satisfies statement (C1), solves a problem of Cassels from the 50’s. We then prove that if $1,\alpha,\beta$ span a totally real cubic number field, then $\alpha,\beta$, satisfy (C1). This generalizes a result of Cassels and Swinnerton-Dyer, which says that such pairs satisfy Littlewood’s conjecture. It is further shown that if $\alpha,\beta$ are any two real numbers, such that $1,\alpha,\beta$, are linearly dependent over $\mathbb{Q}$, they cannot satisfy (C1). The results are then applied to give examples of irregular orbit closures of the diagonal group of a new type. The results are derived from rigidity results concerning hyperbolic actions of higher rank commutative groups on homogeneous spaces.
DOI : 10.4007/annals.2011.173.1.11

Uri Shapira 1

1 The Hebrew University of Jerusalem<br/> Jerusalem 91904<br/>Israel
@article{10_4007_annals_2011_173_1_11,
     author = {Uri Shapira},
     title = {A solution to a problem of {Cassels} and {Diophantine} properties of cubic numbers},
     journal = {Annals of mathematics},
     pages = {543--557},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2011.173.1.11},
     mrnumber = {2753608},
     zbl = {05960664},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.11/}
}
TY  - JOUR
AU  - Uri Shapira
TI  - A solution to a problem of Cassels and Diophantine properties of cubic numbers
JO  - Annals of mathematics
PY  - 2011
SP  - 543
EP  - 557
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.11/
DO  - 10.4007/annals.2011.173.1.11
LA  - en
ID  - 10_4007_annals_2011_173_1_11
ER  - 
%0 Journal Article
%A Uri Shapira
%T A solution to a problem of Cassels and Diophantine properties of cubic numbers
%J Annals of mathematics
%D 2011
%P 543-557
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.11/
%R 10.4007/annals.2011.173.1.11
%G en
%F 10_4007_annals_2011_173_1_11
Uri Shapira. A solution to a problem of Cassels and Diophantine properties of cubic numbers. Annals of mathematics, Tome 173 (2011) no. 1, pp. 543-557. doi : 10.4007/annals.2011.173.1.11. http://geodesic.mathdoc.fr/articles/10.4007/annals.2011.173.1.11/

Cité par Sources :