Canonical subgroups of Barsotti-Tate groups
Annals of mathematics, Tome 172 (2010) no. 2, pp. 955-988.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $S$ be the spectrum of a complete discrete valuation ring with fraction field of characteristic $0$ and perfect residue field of characteristic $p\geq 3$. Let $G$ be a truncated Barsotti-Tate group of level $1$ over $S$. If “$G$ is not too supersingular”, a condition that will be explicitly expressed in terms of the valuation of a certain determinant, then we prove that we can canonically lift the kernel of the Frobenius endomorphism of its special fiber to a subgroup scheme of $G$, finite and flat over $S$. We call it the canonical subgroup of $G$.
DOI : 10.4007/annals.2010.172.955

Yichao Tian 1

1 Department of Mathematics, Princeton University, Princeton NJ 08544, United States
@article{10_4007_annals_2010_172_955,
     author = {Yichao Tian},
     title = {Canonical subgroups of {Barsotti-Tate} groups},
     journal = {Annals of mathematics},
     pages = {955--988},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.172.955},
     mrnumber = {2680485
},
     zbl = {1203.14026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/}
}
TY  - JOUR
AU  - Yichao Tian
TI  - Canonical subgroups of Barsotti-Tate groups
JO  - Annals of mathematics
PY  - 2010
SP  - 955
EP  - 988
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/
DO  - 10.4007/annals.2010.172.955
LA  - en
ID  - 10_4007_annals_2010_172_955
ER  - 
%0 Journal Article
%A Yichao Tian
%T Canonical subgroups of Barsotti-Tate groups
%J Annals of mathematics
%D 2010
%P 955-988
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/
%R 10.4007/annals.2010.172.955
%G en
%F 10_4007_annals_2010_172_955
Yichao Tian. Canonical subgroups of Barsotti-Tate groups. Annals of mathematics, Tome 172 (2010) no. 2, pp. 955-988. doi : 10.4007/annals.2010.172.955. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/

Cité par Sources :