Geodesic flows with positive topological entropy, twist maps and hyperbolicity
Annals of mathematics, Tome 172 (2010) no. 2, pp. 761-808.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a perturbation lemma for the derivative of geodesic flows in high dimension. This implies that a $C^2$ generic riemannian metric has a nontrivial hyperbolic basic set in its geodesic flow.
DOI : 10.4007/annals.2010.172.761

Gonzalo Contreras 1

1 CIMAT, P.O. Box 402, 36.000 Guanajuato, GTO, México
@article{10_4007_annals_2010_172_761,
     author = {Gonzalo Contreras},
     title = {Geodesic flows with positive topological entropy, twist maps and hyperbolicity},
     journal = {Annals of mathematics},
     pages = {761--808},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.172.761},
     mrnumber = {2680482},
     zbl = {1204.37032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.761/}
}
TY  - JOUR
AU  - Gonzalo Contreras
TI  - Geodesic flows with positive topological entropy, twist maps and hyperbolicity
JO  - Annals of mathematics
PY  - 2010
SP  - 761
EP  - 808
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.761/
DO  - 10.4007/annals.2010.172.761
LA  - en
ID  - 10_4007_annals_2010_172_761
ER  - 
%0 Journal Article
%A Gonzalo Contreras
%T Geodesic flows with positive topological entropy, twist maps and hyperbolicity
%J Annals of mathematics
%D 2010
%P 761-808
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.761/
%R 10.4007/annals.2010.172.761
%G en
%F 10_4007_annals_2010_172_761
Gonzalo Contreras. Geodesic flows with positive topological entropy, twist maps and hyperbolicity. Annals of mathematics, Tome 172 (2010) no. 2, pp. 761-808. doi : 10.4007/annals.2010.172.761. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.761/

Cité par Sources :