$p$-adic $L$-functions and Selmer varieties associated to elliptic curves with complex multiplication
Annals of mathematics, Tome 172 (2010) no. 1, pp. 751-759.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show how the finiteness of integral points on an elliptic curve over $\mathbb{Q}$ with complex multiplication can be accounted for by the nonvanishing of $L$-functions that leads to bounds for dimensions of Selmer varieties.
DOI : 10.4007/annals.2010.172.751

Minhyong Kim 1

1 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom and Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea
@article{10_4007_annals_2010_172_751,
     author = {Minhyong Kim},
     title = {$p$-adic $L$-functions and {Selmer} varieties associated to elliptic curves with complex multiplication},
     journal = {Annals of mathematics},
     pages = {751--759},
     publisher = {mathdoc},
     volume = {172},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.172.751},
     mrnumber = {2680431},
     zbl = {1223.11080},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.751/}
}
TY  - JOUR
AU  - Minhyong Kim
TI  - $p$-adic $L$-functions and Selmer varieties associated to elliptic curves with complex multiplication
JO  - Annals of mathematics
PY  - 2010
SP  - 751
EP  - 759
VL  - 172
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.751/
DO  - 10.4007/annals.2010.172.751
LA  - en
ID  - 10_4007_annals_2010_172_751
ER  - 
%0 Journal Article
%A Minhyong Kim
%T $p$-adic $L$-functions and Selmer varieties associated to elliptic curves with complex multiplication
%J Annals of mathematics
%D 2010
%P 751-759
%V 172
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.751/
%R 10.4007/annals.2010.172.751
%G en
%F 10_4007_annals_2010_172_751
Minhyong Kim. $p$-adic $L$-functions and Selmer varieties associated to elliptic curves with complex multiplication. Annals of mathematics, Tome 172 (2010) no. 1, pp. 751-759. doi : 10.4007/annals.2010.172.751. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.751/

Cité par Sources :